A New Look at the Long-term Carbon Cycle

Robert A. Berner, Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, berner@hess.geology.yale.edu

ABSTRACT

The long-term carbon cycle is the cycle that operates over millions of years and that involves the slow exchange of carbon between rocks and the surficial system consisting of the ocean, atmosphere, biota, and soils. It is distinguished from the short-term carbon cycle, in which carbon is rapidly exchanged only within the surficial system. A new type of diagram illustrates the cause-effect relations involved in the long-term carbon cycle and how these processes affect the levels of atmospheric O₂ and CO₂. The diagram also includes the cycle of phosphorus as it affects the burial of organic matter in sediments. The diagram is distinctly different from, and is here compared to, the more traditional representation of geochemical cycles in terms of box models. By following paths leading from causes to effects, one can trace complex loops that demonstrate positive and negative feedback, and this allows discovery of new subcycles that deserve further study. This type of diagram should be applicable in general to other geological and geochemical processes.

INTRODUCTION

The term "carbon cycle" means many things to many people. For those concerned with the present growth of CO₂ in the atmosphere, due to deforestation and the burning of fossil fuels, the carbon cycle consists of those sources and sinks that exchange carbon with the atmosphere on a human time scale. This includes the biosphere, oceans, and soils, and I refer to it here as the short-term carbon cycle. This cycle is also the dominant control on atmospheric CO₂ over longer periods, including the glacial-interglacial stages of the Quaternary. However, as one goes back further in geologic time, one must take into account the exchange of carbon between rocks and the combined biosphere-hydrosphere-atmosphere-soil system. This gives rise to the concept of the long-term carbon cycle, and it is this cycle that is the dominant influence on the levels of atmospheric oxygen and carbon dioxide over millions of years (Holland, 1978). (Humans have accelerated this cycle by the burning of organic carbon in sedimentary rocks that otherwise would oxidize only very slowly by weathering.) A cause-effect-type diagram, previously used in modeling physiology (Grodins, 1963; Riggs, 1970), climate (Saltzman and Moritz, 1980; Saltzman and Maasch, 1991), and ocean nutrients and oxygen (Lenton, 1998) can be used also to illustrate the various kinds of feedbacks that control CO₂ and O₂ in the long-term (multimillion-year) carbon cycle.

LONG-TERM CARBON CYCLE

Summaries of the processes that affect carbon transfer as part of the long-term carbon cycle (Fig. 1), and how they affect atmospheric CO₂ and O₂ can be found in a variety of sources (e.g., Garrels and Perry, 1974; Walker, 1977; Holland, 1978, 1984; Berner, 1989, 1998). The processes affecting CO₂ can be divided into two subcycles. The first, the silicate-carbonate subcycle, involves the uptake of atmospheric CO₂ (processed mostly by photosynthesis and respiration to form soil CO₂ and organic acids) during the weathering of Ca and Mg silicate minerals. A representative generalized reaction for Ca is:

\[2\text{CO}_2 + \text{H}_2\text{O} + \text{CaSiO}_3 \rightarrow \text{Ca}^{2+} + 2\text{HCO}_3^- + \text{SiO}_2. \] (1)

The dissolved Ca²⁺ and HCO₃⁻ are carried by rivers to the sea, where they are precipitated (almost always by means of a biological process) as CaCO₃ in sediments.
IN THIS ISSUE

A New Look at the Long-term Carbon Cycle
In Memoriam
Dialogue
About People
2000 GSA Annual Meeting Field Trips
USArray Initiative
Washington Report—A Turn in U.S. Ocean Policy?
Environment Matters—Managing America's Coastal Parks
Session Proposals for the 2000 GSA Annual Meeting
SEG Student Research Grants
Age of Earth Symposium
First GSA Field Forum
Rock Stars—Edwin McKee

GSA Foundation 20
Memories: 1999 GeoVentures 22
Call for Nominations 23
Book Reviews 24
Wanted: Your Geological Photos 26
Student Travel Grants 28
GSA Offers Awards in Geomorphology and Micropalontology 29
South-Central Section Awards 29
Bulletin and Geology Contents 30
Classifieds 31
SAGE Remarks—Using the Method of Multiple Working Hypotheses 36

In Memoriam

Thomas Arkle, Jr.
Morgantown, Virginia
August 22, 1998

Donald J. Colquhoun
Columbia, South Carolina
June 4, 1999

Cliffton H. Gray, Jr.
Riverside, California
August 1999

George C. Hardin, Jr.
Morrisville, North Carolina
July 20, 1999

Charles D. Hollister
Woods Hole, Massachusetts
August 23, 1999

Valdar Jaanusson
Stockholm, Sweden
August 8, 1999

James O. Jones
San Antonio, Texas
October 3, 1999

Lois S. Kent
Champaign, Illinois
September 21, 1999

Byron K. Thomas
Plano, Texas
November 14, 1997

Please contact the GSA Foundation for information on contributing to the Memorial Fund.

A New Look continued from p. 1

Ca" + 2HCO\textsubscript{3} → CaCO\textsubscript{3} + CO\textsubscript{2} + H\textsubscript{2}O. \hspace{1cm} (2)

(Mg is removed from the oceans by dolomite formation or by exchange for Ca with ridge basalts, the Ca being subsequently precipitated as CaCO\textsubscript{3}). The net overall reaction (Ebelmen, 1845; Urey, 1952) is:

CO\textsubscript{2} + CaSiO\textsubscript{3} → CaCO\textsubscript{3} + SiO\textsubscript{2}. \hspace{1cm} (3)

In this way CO\textsubscript{2} is removed from the atmosphere and buried as limestone. The weathering of Ca and Mg carbonates, by comparison, does not result in net loss of CO\textsubscript{2} to the rock record because the weathering reaction for carbonates is simply the reverse of reaction 2 or its dolomite [MgCa(CO\textsubscript{3})\textsubscript{2}] analogue. To replace the CO\textsubscript{2} lost to the rock record, degassing occurs as a result of the thermal breakdown of carbonates at depth by volcanism, metamorphism, or deep diagenesis. This process completes the silicate-carbonate subcycle and can be represented for Ca simply by:

CaCO\textsubscript{3} + SO\textsubscript{2} → CO\textsubscript{2} + CaSO\textsubscript{4}. \hspace{1cm} (4)

which is the reverse of reaction 3.

The other carbon subcycle is that for organic matter. This subcycle affects both CO\textsubscript{2} and O\textsubscript{2}. The burial of organic matter in sediments represents a net excess of photosynthesis over respiration and can be represented by the reaction normally applied to photosynthesis:

CO\textsubscript{2} + H\textsubscript{2}O → CH\textsubscript{2}O + O\textsubscript{2}. \hspace{1cm} (5)
Dialogue

The Need for Integrated Solutions

Many of the problems we face today—climate change, global warming, ozone depletion, species endangerment and habitat loss, earthquake prediction, coastal population centers, resource distribution and extraction—cannot be easily solved solely from the perspective of one discipline. Scientists, like physicians, are becoming more specialized; yesterday's naturalists are today's biologists, zoologists, botanists, geologists, geophysicists, meteorologists, and myriad other specialties.

Earth now exists somewhere along a spectrum of an experiment started more than 4.55 billion years ago. We know neither the input parameters nor the experimental design. Geologists trained as the observers of clues produced from Earth's processes are in a unique position: as interpreters of these natural systems, we are adept at solving complex problems using knowledge from many different scientific disciplines.

GSA's leadership recognized the unique role that geoscientists play in interpreting earth systems but realized that the trend in earth science education, as in medicine, was toward increasing specialization. Therefore, they placed a specific goal within our strategic plan to emphasize the value of and need for integration. Goal 2 of the GSA strategic plan is: To catalyze cooperative interactions among earth, life, planetary, and social scientists who investigate natural systems over varying scales of time and space. This goal is further divided into objectives that specifically define GSA's role in creating opportunities for cooperative interaction.

This year's Annual Meeting in Denver provided an opportunity for our members to interact on key issues. With the theme of integration, the meeting emphasized interdisciplinary and integrative science.

"Crossing Divides," the meeting emphasized multidisciplinary and integrative science. Seven Pardee Keynote Symposia (named for the late Joseph Thomas Pardee) formed the core of the technical presentations and covered a wide range of topics from climate, global tectonics, and impact events, to the role geoscience plays in environmental and legal decisions. Societal impact and focus were woven throughout the technical sessions, providing ethical, historical, legal, and philosophical points of view. Many other sessions addressed the impact of geoscience on society. Public policy was a critical element in sessions addressing coastal geological risk, the need for greater predictive capability, and creationism versus evolution in the classroom.

As we enter the new millennium, geoscience will continue to play a central role in interpreting natural systems for society. GSA will continue to enhance its role, providing venues for debate and dialogue for natural-system scientists.

A Definition of Geology

Eldridge Moores

A decade ago after extensive debate, the GSA Council adopted the following definition:

Geology is used in the broad sense—the study of Earth and other planets and planetary objects using any and all available techniques, it includes geochemistry and geophysics.

Geology incorporates the study of rocks and their history, the internal structure and processes of the planet and their connection with the surficial rock and land form record, as well as the development and history of life. Geology is the study of complex systems that involves the oceans, atmosphere, biosphere, and the solid Earth. The planetary science revolution has extended geology's scope to include other planetary bodies in addition to Earth.

In keeping with this broad definition of geology, GSA's divisions focus, among other things, on resources, geophysics, planetary geology, global geologic processes, active geologic processes, and the societal impact of geology. Similarly, associated societies represent fields such as mineralogy, geochemistry, paleontology and paleobiology, engineering geology, geoscience education and information, and economic geology.

This diversity of interests encompassed under the GSA umbrella underscores the Society's involvement in and commitment to the integrative nature of geology.

This reaction explains how organic matter burial results in the production of atmospheric O₂. To complete the organic subcycle, O₂ is consumed and CO₂ produced by the oxidation of organic matter in old sediments exposed to weathering on land:

\[\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}. \]

This reaction also represents the overall process of the thermal breakdown of organic matter, followed by the degassing to the surface of reduced carbon-containing gases (exemplified by CH₄ in Fig. 1) and their rapid oxidation to CO₂ by atmospheric O₂.

In sum, reactions 3–6 constitute the long-term carbon cycle and are one way of representing it. Figure 1 is another means of representation, which can be simplified in the form of a box model diagram (see below). However, there is another way of looking at the long-term carbon cycle that does not simply show sinks, sources, and fluxes, as do cartoons like Figure 1 or box model diagrams. Instead of focusing on fluxes and reservoirs, one can look at causes and effects.

CAUSE-EFFECT FEEDBACK DIAGRAM FOR THE LONG-TERM CARBON CYCLE

Figure 2 is another way of looking at the long-term carbon cycle as it affects the levels of atmospheric CO₂ and O₂. (See caption for a detailed discussion of concepts and terminology.) Some processes involving phosphorus (P) are included because of the importance of P as a limiting nutrient in the photosynthetic fixation of carbon. An example of an inverse effect is the increased oxidation of organic carbon to CO₂ by weathering leading to a decrease in atmospheric O₂. An example of a direct response is increased burial of organic carbon in sediments leading to an increase in atmospheric O₂ (via reaction 5 above). This type of diagram should not be confused with similar-appearing geochemical box models. (For comparison, traditional box model diagrams for the short-term and long-term carbon cycles are discussed further below.)

Following arrows around a cycle, Figure 2 allows one to deduce whether the...
Continental Relief and Position

Climate (T + ppmn)

Weathering Ca-Mg Silicates

Volc/Met/Diag Degassing

Weathering Org C Total P

O2

Land Plants

Nutrient Aqueous P

FeP Burial

Organic C sed. Burial

Ocean Circulation

Figure 2. Cause-effect feedback diagram for the long-term carbon cycle. Arrows originate at causes and end at effects. The arrows do not simply represent fluxes from one reservoir to another. Arrows with small concentric circles represent inverse responses, e.g., as Ca-Mg silicate weathering increases, CO2 decreases. Arrows without concentric circles represent direct responses; e.g., as organic C burial goes up, O2 goes up. Letters adjacent to arrows designate paths followed by feedback loops. The blue regions marked O2 and CO2 refer to atmospheric gases. Surficial processes involving carbon are in green, phosphorus in pink, and those not directly involving either C or P in yellow (T is temperature; ppmn is precipitation). Tectonic processes (volcanic, metamorphic, diagenetic degassing; continental relief and position) are in orange boxes. Dashed lines between climate and tectonics or ocean circulation refer to complex combinations of physical processes not discussed in this paper. Nutrient aqueous P is phosphorus dissolved in natural waters that is available for uptake via photosynthesis, both continental and marine; FeP represents phosphorus adsorbed on hydrous ferric oxides. Organic C and P burial includes that on the continents and in marine sediments. For diagrammatic clarity, arrows from organic carbon burial to organic weathering or degassing (i.e., recycling of carbon) are not shown (see text). There is no arrow going directly from CO2 to the weathering of organic carbon because of evidence that changes in atmospheric O2 probably do not affect organic carbon weathering rate (see text).

A New Look continued from p. 3

cycle ends up leading to positive or negative feedback. Negative feedback results when an increase or decrease of a variable results, at the end of a cycle, in a dampening of this increase or decrease. Positive feedback results in amplification of an initial increase or decrease. Discerning negative from positive feedback is the major advantage of using diagrams like this. If during a cycle, the sum of small concentric circles is an odd number, the cycle leads to negative feedback. If the sum of small circles is even, including zero, the feedback is positive. As an example, follow the path marked by arrows B, L, and G. Because only one small circle is encountered, this cycle should result in negative feedback. Increased atmospheric CO2 should lead to a warmer and wetter Earth, via the atmospheric greenhouse effect, which should lead in turn to enhanced weathering of Ca-Mg silicates and uptake of CO2. This negative feedback loop has been emphasized in several studies as an important control on atmospheric CO2 over geologic time (see discussion in Berner and Caldeira, 1997).

The loop N-S-G (just one small concentric circle) represents the fertilization of plant growth by CO2, which in turn accelerates weathering of Ca-Mg silicates and uptake of CO2. This process has been proposed as a means of providing additional negative feedback for stabilizing atmospheric carbon dioxide over geologic time (Volk, 1987). The quantitative significance of this feedback remains to be seen.

Other negative feedback loops that have been emphasized as controls on atmospheric oxygen are also shown on the diagram. Consider the loop A-H-Q-C. An increase in the level of atmospheric O2 should lead to a more oxygen-rich ocean and greater burial of hydrous ferric oxides in sediments. Dissolved phosphate adsorbs strongly to ferric oxides under aerobic conditions, so that greater burial of ferric oxides should entail greater burial of adsorbed phosphate (designated as FeP in Fig. 2). For a constant flux of P to the sea, removal of P from seawater as FeP should lead to less nutrient phosphorus available for organic production. If it is assumed that the limiting nutrient for organic production in the ocean is phosphate (Holland, 1978), less P availability for organic uptake should lead to a lower rate of organic matter sedimentation and burial and, thus, a lower production of O2. Overall what started as an increase in O2 results ultimately in a decrease—i.e., a negative feedback. This loop has been forcefully advocated by Holland (1994) and Van Cappellen and Ingall (1996) as a major control of atmospheric O2.

Another negative feedback loop involving phosphorus has been advanced by Kump (1988). Following path D-E-C we get negative feedback as follows: increased O2 leads to a greater frequency of fires, which reduces the standing crop of land plants. Fewer land plants leads to less sedimentary burial of terrestrial organic carbon and, consequently, less global burial of total organic matter. This then results in less oxygen production. (Phosphorus not buried with terrestrial organic matter is carried to the sea where it is deposited with marine organic matter that has a lower C/P ratio than terrestrial organic matter, leading globally to less C burial per unit of P burial.)

Another negative feedback loop involving phosphorus is shown by the complex path D-F-P-Q-C, which has one concentric small circle, a path advanced by Lenton (1998) as a major control on O2. Higher O2 should lead to greater frequency of forest fires and a lower standing crop of land plants. Fewer land plants should lead, in turn, to less weathering of phosphate minerals because of the accelerating effect of plants on weathering in general (e.g., Lovelock and Watson, 1982; Berner, 1998). Less weathering of phosphorus means less liberation of P to solution, and ultimately to less phosphate in seawater. Less oceanic dissolved P, if it is a limiting nutrient, should lead to less burial of organic matter, and finally a lower production of O2—a negative feedback.

Several feedback loops have heretofore been neglected but should lead to positive feedback. Consider the simple loop D-F-M, which contains two small concentric circles signifying positive feedback. Greater atmospheric CO2 should lead to fewer land plants, which should lead to less weathering of organic matter, which should lead to less O2 uptake and, therefore, an increase in O2. Another positive loop is B-J-K. Higher CO2 should bring about warmer temperatures and greater precipitation, leading to enhanced weathering of organic matter and production of CO2.

Finally, there is the complex cycle B-J-P-Q-R. This is an additional possible negative feedback mechanism for stabilizing atmospheric CO2. Higher atmospheric CO2 should lead to a warmer and wetter climate, greater weathering of phosphate minerals, more P delivered to the sea, more organic matter burial, and, thus,
enhanced removal of CO₂. This possible stabilizing mechanism and the two destabilizing feedbacks discussed above deserve further study.

Examination of Figure 2 reveals that there is no positive arrow directly from atmospheric oxygen to weathering of organic matter. It is often assumed that a higher level of atmospheric oxygen would lead to greater oxidation of organic matter during weathering. However, because organic matter weathers so fast, the rate-limiting step in oxidation is likely to be the exposure of organic matter in sedimentary rocks to air by erosion, and not the actual oxidation process (Holland, 1978, 1994). (Lack of direct dependence of organic-matter oxidation on O₂ does not preclude possible indirect dependence involving land plants—see path D-F, for example.) The idea of direct dependence of organic matter weathering on O₂ is not supported by laboratory determinations of the rate of aqueous coal oxidation as a function of O₂ level (Chang and Berner, 1999). (Coal was studied as a sulfur-free representative of sedimentary organic matter.) Results indicate that there is a low-order dependence of oxidation rate on O₂ level, possibly approaching zeroth-order kinetics on long time scales, and the oxidation rate itself is rapid compared to rates of erosion.

The tectonic processes included within orange squares in Figure 2—continen
tal relief and position and volcanic, metamorphic, and diagenetic degassing—have been considered here as boundary effects (forcing functions), not involved in feedback loops. The actual situation is more complicated (see Fig. 1). Organic matter and the Ca-Mg carbonates resulting from Ca-Mg silicate weathering are eventually buried to depths where they are thermally decomposed, leading to metamorphic (plus diagenetic) and volcanic degassing of CO₂ and degassing of reduced carbon-containing gases (generalized in Fig. 1 as CH₄) that react with atmospheric O₂. Thus, there should be more arrows in Figure 2. However, because of the time lag for burial and thermal decomposition, these longer-term processes have been omitted from the diagram for clarity, as has the effect of exposing previously deposited organic matter much later to oxidative weathering (arrow from organic burial to organic weathering). However, if sea-level change is rapid, this process may constitute rapid recycling of carbon (Berner, 1989) and can lead to negative feedback and the stabilization of O₂.

Although it affects mainly the short-term carbon cycle, ocean circulation is also shown in Figure 2 because of its effect on the phosphorus cycle and eventually on the carbon cycle. Greater overturn of the ocean should lead, in general, to a greater supply of P to surface waters ("nutrient aqueous P") where it can be used to fix carbon during photosynthesis, resulting ultimately in increased organic-carbon burial. Ocean circulation is affected by climate and vice versa, which leads to a link to the whole panoply of processes connected with climate and the necessity of using a much enlarged cause-effect diagram involving continental ice sheets, ocean temperature, solar forcing, etc., as well as some of the processes shown in Figure 2 (see Saltzman and Moritz [1980] or Saltzman and Maasch [1991] for an example of such an expanded diagram). To retain clarity, these relations are omitted from Figure 2 and represented by dashed arrows.

A summary of the effects of increased elevation and relief, due to mountain uplift, on climate (dashed arrows in Fig. 2) is presented by Ruddiman (1997); for the effect on climate of changes in land size, and position relative to latitudinal climate zones (i.e., continental drift), see Otto-Bliesner (1995). In general, it is believed that large-scale mountain uplift results in
A New Look continued from p. 5
global cooling, which has led some work-
ners to suggest that such cooling led in the
past to increased, not decreased, weather-
ing of silicates. However, this constitutes
positive feedback, because the removal of
CO₂ during weathering results in further
global cooling due to the atmospheric
 greenhouse effect. If this positive feedback
was continued for a million years or
more, unreasonable drops in CO₂ and run-
away icehouse conditions would result—
see Berner and Caldeira (1997).

BOX MODEL DIAGRAMS

The traditional geochemical box
models shown in Figure 3 are very useful
for constructing models that quantify
fluxes and changes in sizes of various
reservoirs. However, by themselves they
shed no light on the various processes
affecting the fluxes nor can they be used
to decipher negative or positive feedback.
In this way they are complemented by
cause-effect diagrams like Figure 2.

Note that the reservoirs normally
considered in studies of the short-term
carbon cycle (ocean, atmosphere, biota,
soils) are combined in the long-term cycle.
This is reasonable because of the very
small masses of carbon in these surficial
reservoirs (total of 50×10¹⁸ g C, most in
the ocean) as compared to the carbon in
carbonate rocks (60 000×10¹⁸ g C) and
in shales and coals (15 000×10¹⁸ g C).
Because of their small size and lack of
long-term storage capacity over millions of
years, the sum of all input fluxes to the
combined surficial reservoir in the long-
term carbon cycle must be very close to
the sum of all output fluxes (Berner and
Caldeira, 1997).

Perturbation of the carbon cycles (Fig.
3) by humans comes from burning coal,
soil, and natural gas, by cement produc-
tion, and by deforestation. Fossil-fuel
burning involves the acceleration of the
oxidative weathering of sedimentary
organic matter, which is a component of
the long-term cycle (Fig. 3A). Cement pro-
duction, which involves carbonation of
limestone and is analogous to metamor-
phic degassing, also brings about an accel-
eration of the long-term C cycle. Only
deforestation, which is analogous to
excess terrestrial respiration, involves a
perturbation of the short-term cycle. Thus,
both long- and short-term carbon cycles
are involved in the whole problem of
anthropogenically altered carbon fluxes,
the present-day increase of CO₂ in the
atmosphere, and consequent global warm-
ing due to the atmospheric greenhouse

CONCLUSIONS

The diagrams shown here summarize
present knowledge of processes involved
in the carbon cycles that affect atmo-
spheric CO₂ and O₂ over multimillion year
time scales. Cycles of other elements, like
sulfur and iron, exert an important, but
secondary, effect on the level of atmos-
pheric oxygen. (A summary of the geo-
chemical cycles of carbon and sulfur as
they affect O₂ and how modeling of them
is done can be found in papers by Berner
and Petsch [1998] and Berner [1999].) Pro-
cesses affecting methane, such as clathrate
formation and decomposition, or the
methane greenhouse effect, require new
diagrams. (The methane shown emitting
to the atmosphere in Fig. 1 is assumed to
be oxidized rapidly to CO₂.) To investigate
the carbon cycle further, the time con-
stants for the various cause-effect relations
must be enumerated, as has been
attempted recently for processes affecting
O₂ by Lenton (1998). It is possible that
with the proper time constants, a combi-
nation of negative and positive feedback
could result in oscillations in concentra-
tions of O₂ or CO₂. Although the diagram
shown in Figure 2, representing a new way
of thinking about the carbon cycle, will be
revised, it provides a simple shorthand
representation of our knowledge of the
long-term carbon cycle and a mechanism
for illustrating and discovering negative
and positive feedback loops. Application of
this diagram to other geochemical or
geological cycles could provide new
insights into earth processes.

ACKNOWLEDGMENTS

I have benefited greatly from discus-
sions with Barry Saltzman and Robert Kay,
who reviewed early versions of this
manuscript. Artwork for Figure 1 was done
by Steven Petsch. Research supported by
National Science Foundation grant
EAR-9804781 and Department of Energy
grant FG02-95ER14522. This paper is ded-
icated to my granddaughters Abigail
Berner and Kate and Sarah Wenger.

REFERENCES CITED

and sulfur and their effect on atmospheric oxygen over
Phanerozoic time: Global and Planetary Change, v. 75,
p. 97–122.
Phanerozoic time: The role of land plants: Royal Society
Berner, R. A., 1999, Atmospheric oxygen over Phanero-
zoic time: National Academy of Sciences Proceedings,
v. 96, p. 10,955–10,957.
balance and feedback in the geochemical carbon cycle:
Chang, S., and Berner, R. A., 1999, Coal weathering
and the geochemical carbon cycle: Geochimica et
Cosmochimica Acta (in press).
Ebelmen, J. J., 1845, Sur les produits de la décomposi-
tion des espaces minéraux de la familie des silicates
Garrels, R. M., and Perry, E. A., 1974, Cycling of carbon,
sulfur, and oxygen through geologic time, in Goldberg,
E. D., ed., The sea, Volume 5: New York, Wiley,
p. 303–316.
Grodins, F. S., 1963, Control theory and biological sys-
Holland, H. D., 1978, The chemistry of the atmosphere
Holland, H. D., 1984, The chemical evolution of the
atmosphere and oceans: Princeton, New Jersey, Prince-
ton University Press, 582 p.
Holland, H. D., 1994, The phosphate-oxygen connec-
tion: Eos (Transactions, American Geophysical Union),
v. 75, p. OS96.
Kump, L. R., 1988, Terrestrial feedback in atmospheric
335, p. 152–154.
Lenton, T. M., 1998, Redfield’s green ocean: A geophys-
ical model of marine nitrate, phosphate, and
atmospheric oxygen regulation [Ph.D. thesis]: Norwich,
UK, University of East Anglia.
Lovelock, J. E., and Watson, A., 1982, The regulation of
carbon dioxide and climate: Planetary and Space Sci-
Otto-Bliesner, B., 1995, Global runoff variations during
the Phanerozoic: Estimates from climate model simula-
tions: Journal of Geophysical Research, v. 100,
p. 11,537–11,548.
Pigg, D. S., 1970, Control theory and physiological
feedback mechanisms: Baltimore, Maryland, Williams
and Wilkins.
Ruddiman, W. F., 1997, Tectonic uplift and climate
model of late Cenozoic climate change: Climate
Saltzman, B., and Moritz, R. E., 1980, A time-dependent
climatic feedback system involving sea-ice extent,
ocean temperature, and CO₂: Tellus, v. 32, p. 93–118.
Urey, H. C., 1952, The planets: Their origin and devel-
oment: New Haven, Connecticut, Yale University
Press.
Van Cappellen, P., and Inglis, E. D., 1996, Redox stabi-
lization of the atmosphere and oceans by phosphorus-
Volk, T., 1987, Feedbacks between weathering and
atmospheric CO₂ over the past 100 million years: Am-
Walker, L. G. S., 1977, Evolution of the atmosphere
New York, Macmillan.

About People

GSA Fellow Ian Carmichael, University of California, Berkeley, has been elected a
Fellow of the Royal Society (London).

Fellow Margaret Leinen, University of Rhode Island, has been named the
National Science Foundation’s assistant director for geosciences, as of January 2000.

Fellow Richard Marston has assumed the Sun Chair of Earth System Science in
the School of Geology at Oklahoma State University.