Fig. 4. Repression of Nv-Kr by maternal Nv-gt is required for head and thorax formation in Nasonia. (A) Two models for maternal Nv-gt function. Cytocutcular analysis (B, D, and F) and Nv-hbRNAi expression (C, E, and G) after knockdown for Nv-Kr (B) and (C), Nv-gt+gfp (D and E), and Nv-gt+Kr (F and G).

Nv-gt and green fluorescent protein (gfp) and observed the expected Nv-gt phenotype: deletion of head and thorax, as well as loss of anterior Nv-hb expression (Fig. 4, D and E). Knockdown of Nv-gt and Nv-Kr yielded striking results. In 92% of examined embryos, the head and thorax (T1/T2) were restored (Fig. 4F), and the resulting cytocutcular phenotypes were essentially identical to those after Nv-Kr RNAi alone (Fig. 4B). Consistent with rescued head and thorax development, anterior zygotic Nv-hb was also restored, although not to wild-type levels (Fig. 4G). Nonetheless, the amount of Nv-hb present in Nv-gt+Kr RNAi embryos was sufficient to direct head and thorax development, demonstrating that Nv-Kr expansion impinges anterior patterning and that maternally localized Nv-gt confines Nv-Kr to the embryo’s center. Thus, whereas in Drosophila, bcd-activated Dm-gt plays only a moderate role in positioning Nv-Kr (Fig. 1C), in Nasonia, maternal Nv-gt is sufficient to perform this function. This distinction led us to consider whether Dm-gt’s role in Drosophila would be enhanced if the Drosophila embryo were reengineered to develop like Nasonia—with Dm-gt maternally provided and anteriorly localized. We found that, whereas Dm-gt was sufficient to repress Dm-Kr anteriorly in the absence of bcd (Fig. S1B), head and thoracic structures were not rescued (Fig. S1C)—an unsurprising result given that, in addition to permitting anterior development by regulating Kr-repressing gap genes, bcd also functions instructively to activate genes required for head and thorax formation. In Nasonia, by contrast, the instructive and permissive anterior patterning functions are discrete. Head- and thorax-specific genes are triggered by an instructive anterior determinant, maternal Nv-otd1, which is localized independently of the permissively acting maternal repression system, Nv-gt.

A comparison of the molecular mechanisms employed by two independently evolved (6) long-germ insects not only uncovers those features essential to this developmental mode but also sheds light on how the bcd-dependent anterior patterning program might have evolved. Through analysis of the regulation of the trunk gap gene Kr in Drosophila and Nasonia, we have been able to demonstrate that anterior repression of Kr is essential for head and thorax formation and is a common feature of long-germ patterning. Both insects accomplish this task through maternal, anteriorly localized factors that either indirectly (Drosophila) or directly (Nasonia) repress Kr and, hence, trunk fates. In Drosophila, the terminal system and bcd regulate expression of gap genes, including Dm-gt, that repress Dm-Kr. Nasonia’s bcd-independent long-germ embryos must solve the same problem, but they employ a maternally localized repression system in which maternal Nv-gt is localized to the oocyte’s anterior, where it represses Nv-Kr. In the dipteran lineage, whereas gt retained the ability to repress Kr, maternal regulation of Kr’s position was taken over by two novel features—bcd, a specific dipteran innovation, and the terminal pathway, which, although present ancestrally, appears to function less extensively in the anterior of non-dipteran insects (16, 17). In addition to activating anterior patterning genes such as otd and hb, bcd also acquired regulation of gt, which became a strictly zygotic gene with a reduced role in repressing Kr. Our findings thus identify two independent mechanisms for long-germ anterior patterning—one using two maternally localized genes, otd1 and gt, that respectively activate anterior zygotic patterning genes and repress trunk fates, and a second using bcd for these same functions, thereby demoting otd and gt to zygotic gap genes. Interestingly, it appears that long-germ embryos use RNA localization for a number of different developmental processes (5, 18, 19). By contrast, in short-germ insects, although some localized RNAs have been identified, there is as yet no evidence of their contribution to anterior-posterior patterning (20). mRNA localization indeed appears to be an important component of long-germ embryogenesis, perhaps even playing a role in the transition from the ancestral short-germ to the derived long-germ fate.

References and Notes
21. The authors wish to thank members of the Desplan and Small laboratories for support and advice. This project was supported by NIH grants GM64864, awarded to C.D., and GM51946, awarded to S.S. A.E.B is a Damon Runyon Fellow, supported by the Damon Runyon Cancer Research Foundation (DRG-1870-05).

Supporting Online Material
www.sciencemag.org/cgi/content/full/315/5820/1841/DC1
Materials and Methods SOM Text Fig. S1
References
13 November 2006; accepted 7 March 2007 10.1126/science.1137528

Emergent Biogeography of Microbial Communities in a Model Ocean

Michael J. Follows,* Stephanie Dutkiewicz, Scott Grant,1,2 Sallie W. Chisholm3

A marine ecosystem model seeded with many phytoplankton types, whose physiological traits were randomly assigned from ranges defined by field and laboratory data, generated an emergent community structure and biogeography consistent with observed global phytoplankton distributions. The modeled organisms included types analogous to the marine cyanobacterium Prochlorococcus. Their emergent global distributions and physiological properties simultaneously correspond to observations. This flexible representation of community structure can be used to explore relations between ecosystems, biogeochemical cycles, and climate change.

A significant challenge in understanding the changing earth system is to quantify and model the role of ocean ecosystems in the global carbon cycle. The structure of microbial communities in the surface ocean is known to regulate important biogeochemical pathways, including the efficiency of export of organic carbon to the deep ocean. Although there is extraordinary diversity in the oceans, the biomass of local microbial communities at
any location is typically dominated by a smaller subset of strains. Their relative fitness and ecosystem community structure are regulated by a variety of factors, including physical conditions, dispersal, predation, competition for resources, and the variability of the environment (1–3). Models reflecting this conceptual view have been examined in idealized ecological settings (4) and have been applied to studies of terrestrial ecosystems (5). We have used this approach in a marine ecosystem model that embraces the diversity of microbes and their genomic underpinnings, a model in which microbial community structure “emerges” from a wider set of possibilities and, thus, mimics aspects of the process of natural selection. The system is flexible enough to respond to changing ocean environments and can be used to interpret the structure and development of marine microbial communities and to reveal critical links between marine ecosystem structure, global biogeochemical cycles, and climate change.

Recent ocean models have begun to resolve community structure by the explicit representation of three or four classes, or functional groups, of phytoplankton (6–9), but significant challenges remain (10, 11). First, the specification of functional groups and diversity of the model ecosystem is subjective and somewhat arbitrary. Second, it is difficult to evaluate the parameters controlling such models because quantitative, physiological information from laboratory cultures is extremely limited. Third, observations of microbial community structure with which to evaluate global-scale models are still relatively sparse. Finally, model ecosystem structures optimized to reflect today’s ocean may not be sufficiently dynamic to adapt appropriately to a changing climate where radical shifts in community structure might be possible.

To circumvent some of these difficulties, we formulated a marine ecosystem model that represents a large number of potentially viable phytoplankton types whose physiological characteristics were determined stochastically. The initialized organism types interacted with one another and their environment, evolving into a sustainable ecosystem where community structure and diversity were not imposed, but were emergent properties.

The ecosystem model consisted of a set of coupled prognostic equations (eqs. S1 to S5), with idealized representations of the transformations of inorganic and organic forms of phosphorus, nitrogen, iron, and silica. Many tens of phytoplankton types (here, 78) were initialized in each simulation, each type distinguished by its physiological capabilities and the values of coefficients that control the rates and sensitivities of metabolic processes. These were provided by random drawing from broad ranges guided by laboratory and field studies (table S1). We focused these choices on light, temperature, and nutrient requirements (fig. S1), the niche dimensions for phytoplankton thought to be most important in regulating growth. To facilitate a test of the approach, we also specifically addressed functions that differentiate Prochlorococcus spp. from other phytoplankton, including their small size and inability to assimilate nitrate. Other functions could be emphasized depending on the aim of the study. Ecological trade-offs were imposed through highly simplified allometric constraints (see supporting online material (SOM)). To reflect the extra energetic expense of using nitrate, relative to other inorganic nitrogen sources, we allowed the maximum growth rate to increase slightly when nitrate was not the major nitrogen source (12). Organisms incapable of utilizing nitrate were given a slightly lower nutrient half-saturation. We explicitly represented predation by two classes of grazer and, for the action of heterotrophic microbes, we used a simple remineralization rate (SOM).

A global ocean circulation model constrained from single integration. (A) Total phytoplankton biomass (μM P, 0 to 50 m average). (B) Emerging biogeography: Modeled photo-autotrophs were categorized into four functional groups; color coding is according to group locally dominating annual mean biomass. Green, analogs of Prochlorococcus; orange, other small photo-autotrophs; red, diatoms; and yellow, other large phytoplankton. (C) Total biomass of Prochlorococcus analogs (μM P, 0 to 50 m average). Black line indicates the track of AMT13.

Fig. 1. Annual mean biomass and biogeography from single integration. (A) Total phytoplankton biomass (μM P, 0 to 50 m average). (B) Emerging biogeography: Modeled photo-autotrophs were categorized into four functional groups; color coding is according to group locally dominating annual mean biomass. Green, analogs of Prochlorococcus; orange, other small photo-autotrophs; red, diatoms; and yellow, other large phytoplankton. (C) Total biomass of Prochlorococcus analogs (μM P, 0 to 50 m average). Black line indicates the track of AMT13.

1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 54-1514 MIT, Cambridge, MA 02139, USA. 2Department of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI 96822, USA. 3Departments of Civil and Environmental Engineering and Biology, Massachusetts Institute of Technology, 48-419 MIT, Cambridge, MA 02139, USA.

To whom correspondence should be addressed. E-mail: mick@mit.edu
Prochlorococcus biomass was converted to cell density assuming a quota of 1 fg P cell\(^{-1}\).

Distributions of the four most abundant Prochlorococcus analogs—large phytoplankton that require silica, nitrate-utilizing Prochlorococcus analogs—small phytoplankton that cannot assimilate nitrate, and other large eukaryotes, (iii) Prochlorococcus analogs—small phytoplankton that cannot assimilate nitrate, and (iv) other small photo-autotrophs. The large-scale biogeography of the emergent phytoplankton community was plausible with respect to observations (Fig. 1B) and consistent among the 10 ensemble members. The model successfully captured the domination of annual biomass by large phytoplankton in subpolar upwelling regions, where both light and macronutrients are seasonally plentiful. The subtropical oceans were dominated by small phytoplankton functional types (14). Large areas of the tropics and subtropics were dominated by several Prochlorococcus analogs (Fig. 1C), also in accord with observations (15, 16). Along the cruise track of Atlantic Meridional Transect 13 (AMT13), total Prochlorococcus abundance (the sum of all Prochlorococcus analogs) qualitatively and quantitatively reflected the major features of the observed distribution with highest abundances in the most oligotrophic (nutrient-depleted) waters (15, 17) (Fig. 2, A to D).

Real-world Prochlorococcus exhibit genetic diversity, which leads to differences in light and temperature sensitivities (17–20), as well as nitrogen assimilation abilities (21). The strains, or ecotypes, of Prochlorococcus exhibit distinct patterns of abundance along ocean gradients (15, 17), and observations on AMT13 (17) (Fig. 2, E, G, I, and K) provide an ideal test for the stochastic modeling strategy: Do the emergent model analogs of Prochlorococcus reflect the geographic distributions, relative abundances, and physiological properties of their real-world counterparts?

Of the Prochlorococcus analogs initialized in each model solution, between three and six variants persisted with significant abundances (fig. S4). We grouped the analogs by defining three “model ecotypes” based on distinct geographic habitats, without regard to physiology, which had a qualitative resemblance to the observed distributions of ecotypes along AMT13. In any ensemble member, more than one emergent Prochlorococcus analog may fall into a particular model-ecotype classification, and some were ambiguous. Model ecotype m-e1 (Fig. 2F) was defined to include emergent analogs with significant biomass in the upper 25 m along the transect between 15°N and 15°S, qualitatively corresponding to the habitat of real-world ecotype eMIT9312 (Fig. 2E). Model ecotype m-e2 (Fig. 2H) included analogs that had significant biomass in surface waters polewards of 15°S but low biomass within 15° of the equator, broadly reflecting eMED4 (Fig. 2G). Finally, model ecotype m-e3 (Fig. 2J) was defined to include analogs that had a subsurface maximum biomass, in common with eMIT9313 and eNATL2A (Fig. 2, I and K). The observed widespread distribution of deep maxima with low abundance associated with eMIT9313 and eNATL2A was not clearly reflected in the model analogs. This might be explained by the tendency toward unrealistically complete competitive exclusion typical in ecosystem models (22, 23), precluding persistent populations at low abundance. There is a deep, high biomass layer in the model made up of other, nitrate-consuming, small phytoplankton. This may partially reflect a contribution from nitrate-utilizing Prochlorococcus, which has recently been inferred from ocean observations (24), but which have not yet been seen in culture.

![Fig. 2](https://www.sciencemag.org/science/vol315/issue1137/figs/315_0002_Fig02.jpg)

Fig. 2. Observed and modeled properties along the AMT13 cruise track. Left column shows observations (17), right column shows results from a single model integration. (A and B) Nitrate (μmol kg\(^{-1}\)); (C and D) total Prochlorococcus abundance [log (cells ml\(^{-1}\)]. (E, G, I, and K) Distributions of the four most abundant Prochlorococcus ecotypes [log (cells ml\(^{-1}\)] ranked vertically. (F, H, and J) The three emergent model ecotypes ranked vertically by abundance. Model Prochlorococcus biomass was converted to cell density assuming a quota of 1 fg P cell\(^{-1}\) (27). Black lines indicate isotherms.

![Fig. 3](https://www.sciencemag.org/science/vol315/issue1137/figs/315_0002_Fig03.jpg)

Fig. 3. Optimum temperature and light intensity for growth, \(T_{\text{opt}}\) and \(I_{\text{opt}}\), of all initialized Prochlorococcus analogs (all circles) from the ensemble of 10 model integrations. Large circles indicate the analogs that exceeded a total biomass of 10\(^6\) mol P along AMT13 in the 10th year. Colors indicate classification into model ecotypes (see main text): Red circles, m-e1; blue circles, m-e2; green circles, m-e3. Mixed-color and solid black circles denote ambiguity in model-ecotype classification. Bold diamonds indicate real-world Prochlorococcus ecotypes (red, eMIT9312; blue, eMED4; green, eNATL2A; and yellow, eMIT9313).

www.sciencemag.org SCIENCE VOL 315 30 MARCH 2007
Within each ensemble member, emergent model ecotypes typically followed the abundance ranking of their geographically identified real-world counterparts. These parallels indicate that the stochastic, self-organizing representation of marine ecosystems reflects real-world processes and is suitable for application in ecological and biogeochemical studies. This approach circumvents some of the obstacles facing current ocean ecosystem models, such as the a priori imposition of low diversity, the prescription of dominant functional types, and the difficulty of specifying the physiological rate coefficients that define them. This function-based approach can naturally evolve to exploit the growing body of genomic and metagenomic data mapping the oceans in terms of genes and their encoded physiological functionality (25, 26). Finally, because the ecosystem structure and function are, by design, emergent and not tightly prescribed, this modeling approach is ideally suited for studies of the relations between marine ecosystems, evolution, biogeochemical cycles, and past and future climate change.

References and Notes
28. Thanks to J. Marshall, R. Williams, P. Falkowski, J. Cullen, and J. Bragg for inspiration and encouragement. Thanks also to M. Coleman, R. Hood, and three anonymous reviewers for stimulating comments on the manuscript; to C. Hill for computing guidance; and to P. Heimbach, C. Wunsch, and the ECCO group for ocean circulation state estimates. We are grateful for funding from the PARADIGM consortium of the National Ocean Partnership Program, NSF (M.J.F., S.D.), NSF, DGE (S.W.C.), and the Gordon and Betty Moore Foundation (S.W.C., M.J.F.). M.J.F. is also grateful for the MIT Global Habitat Longevity Award. We acknowledge the Atlantic Meridional Transect consortium (NER/O/S/2001/00680), which enabled the biogeographical observations first published in (27) (AMT contribution no. 107).

Supporting Online Material
www.sciencemag.org/cgi/content/full/315/5820/1843/DC1 Materials and Methods
SOM Text
Figs. S1 to S4
Table S1
References and Notes
7 December 2006; accepted 5 March 2007
10.1126/science.1138544

Cascading Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean

Ransom A. Myers,' Julia K. Baum,'* Travis D. Shepherd, 1 Sean P. Powers, 2 Charles H. Peterson 3* Impacts of chronic overfishing are evident in population depletions worldwide, yet indirect ecosystem effects induced by predator removal from oceanic food webs remain unpredictable. As abundances of all 11 great sharks that consume other elasmobranchs (rays, skates, and small sharks) fell over the past 35 years, 12 of 14 of these prey species increased in coastal northwest Atlantic ecosystems. Effects of this community restructuring have cascaded downward from the cow nose ray, whose enhanced predation on its bay scallop prey was sufficient to terminate a century-long scallop fishery. Analogous top-down effects may be a predictable consequence of eliminating entire functional groups of predators.

Ecological impacts of eliminating top predators can be far-reaching (1) and include release of mesopredator prey populations from predatory control (2) and induction of subsequent cascades of indirect trophic interactions (3–5). In the oceans, fishing has dispropor-