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first method, samples are collected and the concentration of DON or individual
DON components are monitored over time. To measure DON flux rates using 15N
tracer techniques. all of the DIN forms (N~ + , NO3 -.and NO2 -) must be removed,

and the DON pool must be isolated with a high efficiency. At present. there are
three basic approaches used to isolate DON-wet chemistry, ion retardation, and

dialysis.

1. Wet Chemical Isolation

Axler and Rueter (1986) introduced the wet chemical approach, and various
permutations have been applied by later researchers (Slawyk and Raimbault, 1995 ;
Bronk and Ward, 1999). In this approach, ~+ is removed by raising the pH
slightly, thus effecting a change from soluble protonated ~ + , to the more volatile

NH3 via diffusion in a heated oven (Slawyk and Raimbault, 1995) or vacuum
distillation (Bronk and Ward, 1999). Nitrate in the sample is converted to NH3with
DeVarda's alloy, with the NH3 again removed through volatilization (Slawyk and
Raimbault, 1995; Bronk and Ward, 1999). Both of these techniques can suffer
from the artifact of losing labile DON as a result of base hydrolysis (Bronk and
Ward, 2000). The problem in the isolation is likely the lengthy diffusion step
undertaken to remove N~+ and NO3-/NO2- from solution. My own lab has
investigated a suite of other protocols to remove NO3- /NO2-, including vanadium
(VIII; Cox, 1980; Garside, 1982), titanium (Ti III, Cresser, 1977; Cox, 1980), and
other DeVarda's alloy approaches (Page et al., 1982). The breakdown and loss of
DON is a perpetual concern due to the rigorous reducing conditions necessary to
effect the loss of NO3- .For example, some researchers use diffusion in a heated
oven as a way of removing labile DON before isolation of NO3- (Sigman et al.,
1997). Potential artifacts during wet chemical DON isolation and the different
types of DON release rates and their calculation protocols were recently reviewed
by Bronk and Ward (2000) and are not considered here.

2. Ion Retardation

The ion retardation method uses a resin (BioRad AG 11 A8) that retards the
flow of charged particles. Originally developed for desalting blood samples, the
resin can quantitatively remove salts, including N~ + , NO3-, and NO2-, allowing

DON to be isolated in the eluate (Brook and Glibert, 1991, 1993b; Hu and Smith,
1998; Nagao and Miyazaki, 1999). Unfortunately, DOW Chemical, the company
that manufactured the resin marketed by BioRad and other distributors, changed
the manufacturing process of the resin such that the recently produced resin retains
variable amounts ofDON. This DON retention is believed to be due to an accumula-
tion of an organic film on the resin beads during manufacturing (BioRad, pers. com-
mun. ) To overcome this problem, AG II A8 resin can be manufactured and purified
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by buying another resin (Dowex anion exchange resin, BioRad AGI-XS) and then
chernically altering it to produce AG 11 AS as described in Hatch et at. (1957).

3. Dialysis

Another technique that has been considered for isolating DON is dialysis.
Feuerstein et at. (1997) developed a method to isolate DON in freshwater sam-
ples, which uses rotary evaporation to preconcentrate the DON followed by dialysis
(100-Da cutoff) to remove DIN; no data on marine samples were presented. Draw-
backs of the dialysis approach are that the amount of time it takes to remove DIN
(100 h for freshwater; 216 h for marine samples) is excessive, the removal is never
absolute, and the risk of bacterial or N contamination is substantial. My own lab
has experimented with microdialysis to desalt isolated DON before mass spectro-
metric analysis, but found that the pores did not maintain their integrity at high
ionic strengths.

c. LITERATURE VALUES OF DON RELEASE RATES

IN AQUATIC ENVIRONMENTS

DON release rates can vary widely within and between systems as reviewed
in Tables IV and V. In most cases, these rates were measured using whole water
samples, and the specific processes that produced the measured rates are unknown
(see Section m.A).

1. Bulk DON

The mean rate of DON release is similar for both oceanic and coastal systems
at ""'40 ng-at N L -lh-1 though the range is large (Table IV), These rates are
compared to rates of gross N uptake. Gross N uptake is the total amount of N taken
up by cells regardless of whether its ultimate fate was PN production or DON
production (Bronk et al., 1994). This is in contrast to a net N uptake rate, which is
the rate traditionally measured with 15N tracer techniques that only includes PN
production (Bronk et al., 1994). As a percentage of gross N uptake, DON release
appears similar in oceanic and coastal environments with 41 :f: 20 and 39 :f: 26%
of gross N uptake released as DON, respectively (Table IV). Mean rates of release
tend to be higher in estuarine environments, ""'72 ng-at N L -lh-l, but again the
range is large. Based on the limited data available, the percentage of gross N uptake
released as DON in estuarine systems appears to be lower than the other systems
at 23 :f: 8% (Table IV). Collectively these data suggest that DON release is a
significant flux through marine and aquatic systems.
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Table V

Summary of Published Release Rates of Individual Organic N Compounds
in the Field

Compound
released

Release rate
(ng-at N L -1 h-1 )Location Date Method Reference

Oceanic

Bering Sea NP Urea 73.8 :J:: 30.6 15N and 14C Hanse11 and

Goering,1989
Caribbean Sea November

1988
Southern

California

Bight
Southern

California

Bight
(upper 5 m)

Southern
California

Bight
(upper 5 m)

Coastal
Long Island

Sound
Long Island

Sound
Long Island

Sound
Long Island

Sound
Long Island

Sound
Long Island

Sound

Estuarine

Chesapeake
Bay

Chesapeake
Bay

Chesapeake
Bay

Chesapeake
Bay,
mesohaline

Urea 11.17" 14C Cho et at" 1996

14CSeptember Urea 0.002 to 0.014a Cho and Azarn,
1995

14CSeptember Urea 0.002 to 0.045a Cho and Azam,

1995

1.3b [3H]alaOctober Alanine
1983

October Alanine
1983

October Alanine
1983

November ala, glu,
1984 gly,ser

November ala, glu,
1984 gly,ser

November ala, glu,
1984 gly,ser

Fuhnnan,1987

[3H]ala30c Fuhnnan, 1987

<0.ld [3H]ala Fuhnnan, 1987

9.9b (3H]ala Fuhnnan, 1987

[3H]ala17.7" Fuhnnan, 1987

6.2d [3H]ala Fuhrrnan, 1987

Spring Urea 480:!: 200 15N or 15Ntl4C Lamas et al.,

in press

15N or 15Ntl4C Lomas et al.,

in press

15N or 15Ntl4C Lomas et al.,

in press

15Ntl4C Bronk et al.,

1998

Summer Urea 670 :i: 180

Winter Urea 1630:i: 820

May 1988 Urea O to 377

(Continues)
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Table V (Continued)

Compound Release rate
released (ng-at N L -1 h-1 )

-
Date Method

15Nj14C

ReferenceLocation

Chesapeake Bay,
mesohaline

Chesapeake Bay
mesohaline

164 to 794 Brook et al.

1998

Brook et al.

1998

August
1988

October
1988

Jrea

lSNt14(Urea O to 1478

Note. Data was taken directly from tables, estimated from graphs, or obtained from the
author's directly. Data are presented as mean :i: standard deviation.

aBacterial release.
b <202 .urn fraction.
c <202 .urn fraction + added (125-150) copepods.

d <0.22 .urn fraction + added (125-150) copepods.

As seen in Table IV, the percentage of gross N uptake that can be released
as DON can at times be quiet high (i.e., 90% ). Slawyk et al. (2000) contend
that such high percentages of release are "impossible," though I disagree with
both their assumptions and their calculations. Analogous to the release of DOC
as a percentage of primary production, the percentage of release directly from
phytoplankton is likely fairly low, as seen in many of the culture studies presented
in Table IV. One would expect that this percentage can increase substantially,
however, when other trophic levels act on the phytoplankton such as during sloppy
feeding and viral infection (see Carlson, Chapter 4). Though these high rates may
not be sustainable, they are clearly possible.

Rates of DON release that result from either ~ + or NO3- incorporation can

be measured using 15N tracer techniques. Of the studies presented in Table IV, a
higher percentage of gross NO3- uptake is released as DON relative to incubations
where N~ + is the substrate in 7 of 11 cases. Vertical profiles of DON release rates

vary. In the Gulf of Lions, DON release is generally higher in surface waters and
lower at depth (Diaz and Raimbault, 2000). In Monterey Bay, the percentage of N
released as DON increased with depth, suggesting that deeper in the water column,
a smaller percentage of the N taken up is incorporated into sinking particles (Bronk
and Ward, 1999). The fate of N uptake also appears to change. In Monterey Bay,
the primary fate of N uptake is particle production in March but DON production
in September (Bronk and Ward, 1999). These data suggest that the DON pool acts
as an intermediate between DIN assimilation and the net formation of particles for
export and will thus affect C flow in Monterey Bay.

In the Choptank River, a subestuary of Chesapeake Bay, rates of total DON
release are significantly higher in a <202-.um fraction relative to the < 1.2-.um
plankton likely due to feeding processes associated with the larger size fraction
(Bronk and Glibert, 1993b ). Evidence for feeding induced DON release in the
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<202-ILm fraction includes a low ratio of LMW DON to total DON release, an
increase in DON release rates at night when grazing tends to be higher, and a dou-
bling of phaeopigment concentrations during the 36-h experiment, which are an
indicator of active grazing. In contrast, rates ofLMW DON release in the < 1.2-ILm
plankton are not significantly different from rates of total DON release and rates
of DON release decrease by over 95% in the dark, suggesting that passive re-
lease from autotrophs is a more important release process. In another study in
Chesapeake Bay, the average rates of DON release are remarkably constant from
season to season, although, within a diel period, there is considerable variability.
DON release also often appears to decrease at night, although the difference is not
statistically significant (Bronk et al., 1998).

2. Urea

Urea has been shown to be excreted by chryptomonads, herbivorous marine
zooplankton, oceanic and lake microzooplankton, bivalve mulluscs, marine and
freshwater teleost fish, and freshwater crabs (Antia et al., 1991).

In the Bering Sea, in situ production of urea is approximately equal to the con-
sumption of urea (Hanse1l and Goering, 1989). In the central channel ofChesapeake
Bay, rates of urea regeneration are generally less than rates of ~ + regeneration,

but, at the highest rates measured, urea regeneration can contribute 100% of the
phytoplankton N requirement (Bronk et al., 1998). Lomas et al. (in press) reviewed
rates of urea regeneration in Chesapeake Bay and found that mean baywide surface
urea regeneration rates are highest but most variable during the fall. In the Southern
California Bight, urea decomposition is significant deeper in the water column,
particularly at the base of the euphotic zone, and the activity is primarily in the
bacterial size fraction (Cho and Azam, 1995). These data suggest that urea is an
important intermediate between sinking particles and release of ~ + mediated

by bacteria in the mesopelagic.

3. DCAA and DFAA

DCAA and DFAA are other important organic release products. In cultures
enriched with DIN, extracellular DFAA often accumulate with the highest con-
centrations generally present during stationary phase (Poulet and Marine-Jezequel,
1983; Myklestad et al., 1989). Diatoms showed the highest rates of DFAA excre-
tion during exponential growth (Myklestad et al., 1989, and references therein).
The types of amino acids released from Chaetoceros affinis (diatom) changes dur-
ing exponential growth relative to stationary growth (Myklestad et at., 1989).
In cultures of Phaeodactylum tricomutum, DFAA accumulate extracellularly,
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particularly glycine, threonine, and serine, which are all important in cellular
respiration or are components of cell walls that are likely resistant to decomposition
(Marsot et al., 1991).

Amino acid enantiomeric ratios have also been used to infer DOM release
by capitalizing on the fact that eukaryotic organisms release exclusively the
L enantiomer. The DCAA in refractory DOM generally has a low LID ratio of
3 to 4 (Lee and Bada, 1977; McCarthy et al., 1998; II.C.3). Significant phyto-
plankton release, however, can increase the LID ratio up to 8, making the ratio a
useful indicator of new DOM production.

4. Release of DON Relative to DOC

Relatively little is known about the relationship of DOC to DON release. In
general, '"'-'5-30% of primary production is directly released as DOM by phyto-
plankton though the range is very broad (Baines and Pace, 1991; also see Carlson,
Chapter 4). In the studies presented here, a mean of 22 to 41% of gross N uptake is
released as DON, but as with DOC, the range is very broad (see Section UI.C.l).

If phytoplankton maintain a C:N ratio of approximately 6.6, and they are ulti-
mately the primary source for released DOM, then it is reasonable that the C:N
of DOM release should be '"'-'6.6 over appropriate space and time scales (see Karl
and Bjorkman, Chapter 6). In Chesapeake Bay, combined DOC and DON release
rate data indicate that recently released DOM has an approximate C:N ratio of 3.3
in May, 5.0 in August, and 4.7 in October (Bronk et al., 1998). This low C:N ratio
is consistent with an apparent accumulation ofN-rich DON in the Bay from May
to August as observed in the ambient DOC and DON pools. Carlson et al. (2000)
reported that DON in excess of background (i.e., winter) concentrations has a C:N
ratio of 6.7.

S~ndergaard et al. (2000) performed mesocosm experiments to investigate DOC
and DON accumulation under a range of conditions over time. Following an II-day
time lag, the concentration of DON increases linearly (r2 = 0.88-0.89) with time
in all treatments (added N, P, glucose, and various combinations of the three). The
average DON production rates for all treatments, except for the high N addition
treatment, is 0.28 JLM day -land the released DOM has a C:N ratio of 11. In the
high N addition treatment (5 x the amount added to the rest of the treatments) the
rate of DON production increases to 0.74 JLM day-lwith a DOC:DON ratio of
the released material of 20.

D. SOURCES OF DON: RESEARCH PRIORITIES

Clearly there is much work to be done quantifying rates of DON release
and, more importantly, systematically defining the mechanisms that produce the
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measured rates of release. Along these lines, a quick nondestructive means of iso-
lating DON in quantities sufficient for mass spectrometric analysis remains one
of the holy grails of marine N research. Such a method could be used to isolate
DON in tracer experiments, as well as provide a way to limit analytical error in
the measurement of DON concentrations in areas where inorganic N is high, such
as the deep ocean. Other areas that should be a high priority for future research
are linking DOC with DON release in laboratory growth experiments and in the
field, quantifying the role of viruses in DON release, and defining the rates and
pathways involving micro- and macrozooplankton in DON release (i.e., sloppy
feeding versus excretion versus fecal pellet dissolution). Most of this latter work is
fairly straightforward and doable with existing methods. Quantifying virus medi-
ated release, however, will be challenging, particularly in developing appropriate
experimental controls.

IV. SINKS FOR DON

To date, most studies of N uptake in aquatic systems have focused on DIN, and
the studies of DON utilization that have been done have focused on labile LMW
DON compounds (i.e., DFAA and urea), which are generally present at very low
concentrations. Three main sinks for DON will be considered here -heterotrophic
uptake, autotrophic uptake, and abiotic photochemical decomposition (Fig. 5).
Here I present the evidence for heterotrophic versus autotrophic use of DON and
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the role of cell-surface enzymes, discuss a possible link between DON and harmful
algal blooms (HABs ), review important considerations in measuring DON uptake,
and present a survey of recently published estimates of DON uptake rates. The
section concludes with a review of photochemical N release and suggested areas
for future research.

A. HETEROTROPHIC VERSUS AUTOTROPHIC DON UTILIZATION

Heterotrophic bacteria have traditionally been considered the primary users of
DON in marine systems. Several aspects of DOM use by bacteria have recently
been reviewed in Williams (2000) and Carlson (Chapter 4). Therefore, I will focus
the bulkofmy review on the emerging role of DON as a source of N forautotrophs.

1. Heterotrophs

Studies have shown that bacteria can utilize dissolved proteins and DCAA, and
that DFAA can support a large fraction of bacterial growth in freshwater and ma-
rine systems (see Carlson, Chapter 4). Most bacteria can take up only inorganic or
small organic compounds (Antia et al., 1991). Therefore, extracellular hydrolysis
is necessary before the bulk of the water column DON can be used for growth
by these organisms (see review by Mtinster and De Haan, 1998). Rates of peptide
hydrolysis can determine the supply of free amino acids available for uptake or ex-
tracellular oxidation. Similarly, rates of amino acid oxidation may be an important
control affecting the supply of N~+. A number of methods have been devel-
oped to detect proteolytic activity in seawater and sediments, including peptide-
like fluorogenic compounds such as leucine-methylcoumarinylamide (Leu-MCA),
which have been used to measure aminopeptidase activity (Hoppe, 1983). Addi-
tionally, combined hydrolysis and uptake of radiolabeled proteins and peptides
have also been measured (Hollibaugh and Azam, 1983; Keil and Kirchman,
1999). A fluorescently labeled peptide was recently synthesized and tested in
seawater and sediments (Pantoja et al., 1997, Pantoja and Lee, 1999). This com-
pound, Lucifer yellow-labeled tetraalanine, has the advantage of allowing one to
follow both hydrolysis and product formation; it is specific for peptide hydrolysis
as it competes with natural peptides for hydrolysis.

2. Autotrophs

It has been argued that if even a small fraction of the large DON pool were
utilizable by phytoplankton as a N source, then N-sufficient cells could exist in
waters having undetectable DIN concentrations (Jackson and Williams, 1985).
The role that DON plays as a N source for autotrophs, however, is still under
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debate, as are the potential mechanisms of utilization-bacterial ammonification
and subsequent phytoplankton uptake of the released N or direct incorporation via
cell surface enzymes (Fig. 5).

Bacterial degradation of DON followed by phytoplankton uptake of the re-
leased compounds has been demonstrated by a number of researchers (Herman
et at., 1991; Antia et at., 1991; Ietswaart et at., 1994; Lisa et at., 1995; Palenik
and Hensen, 1997; Herman et at., 1999). When the decomposition results in N~ +

production, the process is known as ammonification. Direct uptake of DON, with-
out bacterial mediation, was considered to be relatively minor. Research over the
past decade, however, requires that this assumption be reevaluated. A number of
phytoplankton species have been shown to possess cell surface amine oxidases,
which can cleave amino groups from amino acids and primary amines (Palenik
and Morel, 1990a,b, 1991; Fig. 6). The resulting alpha-keto acids (from amino
acids) or aldehydes (from primary amines) are released as potential C sources for
bacteria. This scenario illustrates that, though studies with 14C-Iabeled organic
compounds result in transfer of the label to the bacterial fraction, these results can-
not necessarily be extrapolated to include utilization of the associated amino N .
Mulholland et at. (1998) quantified extracellular amino acid oxidase activity in
natural waters from a number of oceanic and estuarine systems using a fluorescent
analog of lysine (Pantojaand Lee, 1994). The highest rates of oxidase activity were
observed in mesocosms during bloom-like conditions and in samples enriched with
Trichodesmium.

The resurgence in interest in autotrophic DON utilization has fostered a return
to classical culture work ( see Antia et at. , 1991) .One of the common problems with

-- "'

0;Amine oxidase

14C -amine

Figure 6 Conceptual diagram of phytoplankton amine oxidase activity (adapted from the work of
Palenik and Morel, 1991). The enzyme catalyzes the decomposition of an amine at the surface of a
phytoplankton cell resulting in the release of ammonium (NH4 +), a keto acid, and hydrogen peroxide
(H20V. The amine is shown labeled with 14C to illustrate that in a tracer experiment, the amine will
appear to be used by the bacterial fraction, while the N may actually be utilized by the phytoplankton.
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much of the early culture work, however, was that the concentrations of organic
N compounds offered to phytoplankton as sole N sources were much higher (at
times two to three orders of magnitude higher) than the concentrations of these
compounds present in the environment. Though the studies show that a suite of
organic N compounds can be a N source for phytoplankton, it is believed that at the
very low concentrations of these compounds present in the environment, bacteria,
with their superior surface to volume ratio and uptake capabilities, outcompete
phytoplankton for their use. For example, John and Flynn ( 1999) quantified DFAA
uptake by the toxic dinoflagellate Alexandrium .fundyense and found that, though
it can use DFAA as a N source, DFAA cannot support substantial growth at the
concentrations found in the environment. This study reinforces the necessity of
using environmentally relevant concentrations in cultures.

Recent culture studies have shown that Aureococcus and Nannochloris sp. can
grow on glutamic acid as its sole N source (Dzurica et al., 1989). A host of or-
ganic N compounds, including hypoxanthine, acetamide and formamide, can also
support growth in the ubiquitous coccolithophore, Emiliania huxleyi, although the
substrates were added at 100 JLM levels (Palenik and Henson, 1997). They sug-
gest that small amides are transported into the cell and then degraded to produce
N~ + through the use of amide-specific enzymes. Results from other studies of

E. huxleyi suggest that organic N use might be strain specific. For example, some
strains grow well on amino acids (Flynn, 1990) while others do not (Iestwaart
et al., 1994). Palenik and Koke (1995) found that N starvation in E. huxleyi in-
duces a cell-surface protein (NPR1) that is present when cells are growing on
organic N forms (urea and purines) but not when cells are growing on DIN, rais-
ing the question of its possible role as an organic N transporter. A number of
phytoplankton species from Lake Kinneret, Pediastrum (Chlorophyta), Cyclotella
(diatom), and Aphanizomenon ovalisporum (cyanobacteria), also grow well on a
number of organic N compounds, including urea, ornithine, lysine, glucosamine,
hypoxanthine, and quanine (Herman and Chava, 1999). Again, however, experi-
ments were done with 100 JLM substrate additions such that relating the results to
natural waters is questionable.

3. Potential Link between DON and Harmful Algal Blooms

Much of the work on DON utilization in the recent past has been tied to DON's
potential as a N source to phytoplankton that can fonn HABs. There is increasing
evidence linking DON additions with the increase in hannful algal species (Paerl,
1988; Berg et at., 1997; Carlsson et al., 1998). In general, diatom abundance
tends to correlate with high NO3- concentrations (Malone, 1980; Kokkinakis and
Wheeler, 1988; Probyn etal., 1990), while low NO3- concentrations and high rates
of ~ + or DON addition tend to correlate with high microflagellate abundance

(Probyn, 1985; Paerl, 1988; Lomas and Glibert, 1999; Carlssonetal., 1998; Glibert
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and Terlizzi, 1999). Dinoflagellates, in particular, are characterized by diverse nu-
tritional strategies (Schnepf and Elbriicter, 1992; see review of mixotrophy by
Caron, 2000), and a number of dinoflagellate species can use organic nutrients,
such as urea and amino acids, both directly (Butler et al., 1979; Berg et al., 1997)
and indirectly, via cell-surface enzymes (Palenik and Morel, 1990a,b; Pantoja and
Lee, 1994; Mulholland et al., 1998). Three toxic species that have received consid-
erable attention are the brown tide Aureococcus anophagefferens (a pelegophyte),
Gymnodinium breve (a dinoflagellate), and Pfiesteria piscicida.

A. anophagefferens has been prevalent along the Northeast Atlantic coast for
over 15 years (Bricelj and Lonsdale, 1997). A number of studies have implicated
DON in initiating the blooms (Dzurica et al., 1989; Berg et al., 1997; LaRoche
et al., 1997) with particular emphasis on urea utilization (Dzurica et al., 1989;
Berg et al., 1997). Berg et al. (1997) found that organic N comprised 70% of
the total N utilized, with the largest portion of N utilization supplied by urea,
during an A. anophagefferens bloom off Long Island. In contrast, Gobler and
Safiudo-Wilhelmy (2001) found that urea additions did not increase the relative
abundance of A. anophagefferens while glucose additions did. They suggest that
DON additions with higher C:N ratios than urea (i.e., amino acids or amino sugars)
may be more likely to trigger a brown tide bloom. Brown tides off Long Island
are found to commonly occur in drought years when NO3- inputs are reduced and
DON concentrations are high relative to DIN (LaRoche et al., 1997). Glibert and
Terlizzi (1999) found that high urea levels (> 1.5 .uM) cooccur with dinoflagellate
blooms in aquaculture ponds. G. breve, like other dinoflagellates, can also take
up a variety of organic N compounds (e.g., vitamins, amino acids) as N sources
for growth (Steidinger et al., 1998). In cultures of G. breve, cell yields increase
dramatically when glycine, leucine, and aspartic acid are added (Shimizu et al.,
1995). Likewise, the kleptoplastidic (when functional chloroplasts are retained
from algal prey) Pfiesteria piscicida can use DIN, urea, and glutamate in culture
(Lewitus et al., 1999).

B. METHODS FOR ESTIMATING BIOTiC DON UPTAKE

DON is difficult to study as a N source because it is composed of a large number
of compounds and the exact composition is unknown (Gardner and Stephens,
1978; Sharp, 1983; Antia et at., 1991). As a result, measurements of DON uptake
rates have largely been limited to a few compounds which have commercially
available 15N, 14C, or 3H tracers such as amino acids or urea (Fuhrman, 1987;
Hansell and Goering, 1989; Wheeler and Kirchman, 1986; Cochlan and Harrison,
1991; Antia et at., 1991). Bronk and Glibert (1993a) developed a method for
manufacturing 15N-labeled DON produced in situ, which involves incubating a
whole water sample with 15N-labeled~ +or NO3-. The recently released DO15N
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is then isolated using ion retardation resin (see Section III.B.2) and subsequently
used as a tracer to quantify DON uptake rates. Much of the recent work focusing
on the bulk DON pool used a bioassay approach, where changes in ambient and
added DON are monitored over time (Seitzinger and Sanders, 1997). Bioassay
approaches are particularly useful in determining the biological availability of
more recalcitrant organic N compounds, such as humic substances (Carlsson and
Graneli, 1993; Carlsson et at., 1995).

c. LITERATURE VALUES OF DON UPTAKE

IN AQUATIC ENVIRONMENTS

Consideration of organic N uptake is slowly becoming a routine part of many
field programs. Here, uptake rates of bulk DON (i.e., the total DON pool), urea,
DCAA and DFAA, humic substances, and other DON compounds are discussed.

1. Bulk DON

Most of the work done on bulk DON utilization has been in freshwater systems
using a bioassay approach. This work suggests that 12 to 72% of the DON pool is
bioavailable on the order of days to weeks. In the Delaware and Hudson Rivers,
40-72% of the DON is consumed during 10- to 15-day dark bioassays, and DON
consumption results in both an increase in PN and the release of DIN (Seitzinger
and Sanders, 1997). These data suggest that the bioavailable DON can be utilized
within estuaries with residence times on the order of weeks to months. In systems
where residence times are shorter, riverine DON will be a source of bioavailable
N to coastal waters.

Stepanauskas et at. (1999a) measured the concentration and bioavailability of
three MW DOM fractions in samples collected seasonally in Swedish wetlands.
The percentage of bulk DON represented by the different fractions ranges from a
mean of23% for the HMW fraction to a low of6% for LMWDON. They found that
bioavailable DON is higher in seawater than in freshwater and that bioavailability
does not correlate with the C:N ratio of the DOM. The percentage of the different
fractions that are bioavailable in seawater cultures are 12 :I:: 4, 7 :I:: 3, 5 :I:: 4, and
16:1:: 8% for bulk, HMW, intermediate, and LMW DON, respectively. In additional
studies in wetlands, the addition of natural DON stimulates cell-specific AMPase
activity; refractory and humic-rich DOM causes a stronger stimulation than other
forms believed to be more labile (Stepanauskas et at., 1999b). AMPase activity
is twofold higher in seawater, relative to freshwater, indicating that hydrolysis
and turnover of terrestrial DON may increase when it enters the coastal ocean
(Stepanauskas et at., 1999b).
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In two streams in Sweden, 19-55% of the bulk DON is bioavailable in short-tenn
bioassays (Stepanauskas et at., 2000). Only 5-18% of the DON is identified as urea,
DCAA, or DFAA, suggesting that bacteria also utilize other organic N compounds.
Potential DON bioavailability is positively correlated with the concentration of
DCAA and the proportion of L-enantiomers in amino acids. In 7- to 8-day bioassay
experiments in the Gulf of Riga, an average of 77% (8-136%) of the bacterial
N biomass accumulation is a result of DCAA and DFAA uptake, and 13% of the
DON is bioavailable during the study (J~rgensen et at., 1999). Bronk and Glibert
(1993a) used 15N-labeled DON produced in situ in Chesapeake Bay and found
that during the decline of the spring bloom, uptake rates of DON are higher than
uptake rates of ~ + and NO3 -.In August, rates of DON uptake are again higher
than uptake rates of NO3 -, though not higher than N~ + .

2. Urea

In general, phytoplankton are believed to be the primary users of urea in ma-
rine systems (Price and Harrison, 1988, Table VI). More recent studies, however,
have called this belief into question (Tarnminen and Irmisch, 1996). In the Thames
Estuary, the addition of a broad procaryotic inhibitor reduces dark uptake rates of
amino acids by 49 :J:: 20% and urea by 86 :J:: 25%, suggesting that, contrary to popu-
lar belief, autotrophs use a significant fraction of the amino acids and that bacterial
uptake of urea is substantial (Middelburg and Niewenhuize, 2000). The whole wa-
ter microbial community and the heterotrophic bacterial community alone appear
to prefer amino acids, with ~ + and urea next, and NO3- as the least preferred N

substrate. In the bioassay study described in the previous section, J!ISrgensen et al.
( 1999) also found that urea uptake by bacteria can be as important as DFAA uptake.

In the Chesapeake Bay plume, urea contributes 60 to 80% of the N uptake
measured throughout most of the year (Glibert et al., 1991). Lomas et al. (in press)
reviewed urea uptake rates for over a decade in Chesapeake Bay and found that
urea is consistently an important N source for the plankton community, and that
the highest mean baywide rates are observed during the summer.

Illustrating the close coupling between urea uptake and urea regeneration,
Hansell and Goering (1989) found that urea uptake rates based on urea disappear-
ance are an average of 140% greater than those based on rates of N accumulation in
the Bering Sea. Because urea regeneration is prevalent in their samples, correcting
for isotope dilution increases measured uptake rates by an average of 54%.

3. DCAA and DFAA

Bacteria are generally considered the primary users of DCAA and DFAA. As
noted for urea above, changes in the size of the DFAA pool are generally small even
when rates of uptake and release are substantial, indicating that uptake and release
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processes are closely coupled (Fuhrman, 1987). In Long Island Sound, DFAA
supply > 10% of the C and N used to fuel bacterial growth, and DFAA uptake and
release rates tend to be highest near noon and lowest at night, suggesting a link to
autotrophs (Fuhrrnan, 1987). The four amino acids measured (glutamic acid, serine,
glycine, alanine) can supply 44 to 131% of the calculated bacterial N demand.

In other studies, DFAA and DCAA have been shown to supply '"'"'50% of the
bacterial N demand in estuarine and coastal systems (Keil and Kirchman 1991a,
1993; Middelboe et al., 1995). In the subarctic Pacific and Delaware estuary,
DFAAs are used preferentially over DCAAs unless DFAA concentrations are
very low (Keil and Kirchman, 199Ia). In 14 bioassays performed, 51 ::1: 45% of
the bacterial N demand is met by DFAA, with 18::1: 24% met by DON other than
DFAA. In the Northern Sargasso Sea, protein is the dominant form of DON fueling
bacterial production, supporting 20 to 65% of the estimated bacterial N demand
in the surface (Keil and Kirchman, 1999). Middelboe et al. ( 1995) also found that
DFAA and DCAA sustains up to 34 and 24% of the bacterial N demand, respec-
tively, during exponential growth. As DFAA and N~ + concentrations decrease

during stationary phase, the importance of DCAA as both a C and an N source
increases.

In the Mississippi plume, rapid DFAA turnover occurs coincident with rapid
N~ + regeneration rates, suggesting that DFAA are important substrates for bacte-
rial ~ + regeneration in the plume (Comer and Gardner, 1993). Similar findings

where DFAA turnover exceeds bacterial N demand have been observed in another
study in the plume (Gardner et al., 1993), in Chesapeake Bay (Fuhrrnan, 1990),
and in the subarctic Pacific (Kirchman et al., 1989; Keil and Kirchman, 199Ia).

The role of DFAA as a N source for phytoplankton was reviewed in Flynn and
Butler (1986) and Antia et al. (1991). Though laboratory studies show that some
phytoplankton can grow on DFAA, uptake of DFAA by phytoplankton is consid-
ered to be insignificant in the field; as noted above, recent research on cell-surface
enzymes suggests that phytoplankton use ofDFAA may be greater than previously
thought (see Section IV.A.2). In a salt marsh phytoplankton community, addition
of organic N, including glycine, glutamic acid, and an amino acid mixture, results
in increased phytoplankton growth (Lewitus et al., 2000). The physiological re-
sponse of the phytoplankton community to organic N additions, in the presence
and absence of antibiotics, suggests that the stimulation caused by organic N addi-
tions results directly from uptake of the organic substrates and indirectly through
bacterial decomposition.

The newly recognized Archaea also appear to use DFAA. In studies in the
Mediterranean Sea and the Pacific Ocean near California, '"'"'60% of the Archaea
exhibit measurable DFAA uptake at nanomolar levels (Ouverney and Fuhrrnan,

2000).
There is increasing recognition that the utilization ofDCAA and DFAA may be

affected by abiotic reactions. Glucosylation and adsorption processes appear to be
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important in making labile compounds more refractory. Rates of protein utiliza-
tion decrease when the protein is adsorbed to submicrometer particles (N agata and
Kirchman, 1996). This is potentially a very important mechanism because the sur-
face area of colloids in the surface ocean likely exceeds that of bacteria (Schuster
et al., 1998). Accordingly, a given amino acid released from a phytoplankton cell
is much more likely to come into contact with colloidal material, rendering it
less biologically available, than to come into direct contact with a bacterial cell.
These studies suggest that competition between abiotic adsorption onto colloids
and bacterial uptake can have large implications for the cycling of DOM, partic-
ularly small labile moieties such as amino acids. An estimated'"'"' 11-55% of the
DFAA detectable by HPLC may be adsorbed to colloidal DOM in oceanic surface
waters (Schuster et al., 1998). Natural bacterial populations degraded '"'"'92% of
dissolved unprotected proteins in 72-90 h in one study (Borch and Kirchman,
1999). Protein adsorbed to or present within liposomes, designed to mimic protein
that is adsorbed or trapped within particles similar to those produced by protists,
however, has substantially lower degradation rates. The fecal pellets of some flag-
ellates are believed to be similar in structure to liposomes (Nagata and Kirchman,
1992), and viral lysis can also produce liposome-like structures (Shibata etal.,
1997). Reduction in the degradation rates of organics associated with liposome-
like structures may explain the presence of membrane proteins in the deep ocean
DOM pool (Tanoue et al., 1996; McCarthy et al., 1998).

On the flip side, adsorption of DFAA can also make refractory organics more
bioavailable. Adsorption ofDFAA to dextran and phytoplankton-derived colloidal
DOM results in approximately three times more efficient utilization of dextran or
colloidal DOM by marine bacteria when compared to dextran or DOM without
adsorbed DFAA (Schuster et al., 1998).

4. Humic Substances

Humic substances constitute a large reservoir of organic C and N in both aquatic
and terrestrial systems (Mantoura et al., 1978). Humic substances have long been
recognized for their ability to chelate organometallic substances, thereby mak-
ing trace metals more available to phytoplankton (Prakash, 1971; Prakash et al.,
1973) and sequestering toxic heavy metals (Barber, 1973; Toledo et al., 1982).
Biologically, humic substances have traditionally been considered unavailable for
assimilation due to their HMW and structural complexity. More recent studies of
HMW organic compounds, however, have revealed that they are not as refractory
as once thought (Moran and Hodson, 1994; Amon and Benner, 1994; Gardner
et al., 1996).

Despite these advances, the role of marine humic substances remains unclear.
It has been postulated that some phytoplankton, specifically the dinoflagellates,
may be able to utilize N bound to humic substances (Carlsson and Graneli, 1993).
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Experiments in which natural humic substances, isolated from river water, are
added to an assemblage of coastal phytoplankton reveal that growth and biomass
formation are stimulated (Carlsson et al., 1993). The literature suggests that the N
associated with humic substances can be removed via one of three mechanisms:
through microbial activity (Mtiller- Wegener, 1988), via excision by phytoplankton
cell-surface enzymes (Palenik and Morel, 1990a; see Section IV.A.2), or through
photodegradation to LMW compounds by exposure to UV radiation (Gellar, 1986;
Kieber et al., 1990; Mopper et al., 1991; see Section IV.D).

5. Other Organic Compounds

Additional studies that measure uptake of other organic N compounds such as
purines (Douglas, 1983), pyrimidines (Knutsen, 1972), and amines (Neilson and
Larsson, 1980; Wheeler and Hellebust, 1981) show that though phytoplankton and
bacteria can utilize these compounds, the uptake rates are quite low (reviewed in
Antia et al., 1991). There is still a debate as to whether D-DNA is actually used as a
source of N for bacteria; D-DNA is approximately 16% N and so it has the potential
to be aN source. Paul etal. (1988) found evidence that D-DNAis used as a source of
nucleic acids for bacteria and that it is degraded to provide phosphate needed by the
cell. J!/Jrgensen et al. (1993) measured uptake rates ofDCAA, DFAA, and D-DNA
in seawater cultures, and found that D-DNA is used primarily as a source of N.
When DCAA, DFAA, and D-DNA are combined, they provide 14 to 49% of the
net bacterial N uptake measured in that study. Using turnover times of unidentified
HMW DON, estimated with 815N data, DON concentrations, and rates of primary
production, Renner et al. (1997) estimated that DON remineralization can support
30-50% of daily phytoplankton N demand in the equatorial Pacific region.

Do PHOTOCHEMICAL DECOMPOSITION AS A SINK FOR DON

Recent findings in freshwater and marine systems indicate that photochemical
processes can effect the release of labile N moieties from DOM (Bushaw et al.,
1996). Numerous studies have shown that photochemical reactions occur when
DOM from freshwater or marine environments is exposed to natural sunlight.
The resulting photoproducts include carbon monoxide, carbon dioxide, various
carbonyl compounds, and likely many others (see reviews by Moran and Zepp,
2000, and Mopper and Kieber, Chapter 9). Some of these photoproducts can be
lost by direct transfer to the atmosphere, while others can be assimilated rapidly
by natural bacterial populations (Kieber et al., 1989; Gener, 1986; Linden et al.,
1995). With respect to N, we know that substances containing organic N can play
an important role in the impact of UV radiation on aquatic biogeochemical cycles
(de Mora et at.. 2000).
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To date, most of the studies of N photoproduction have focused on fresh
or brackish water systems (Table VII). Studies have documented the photopro-
duction of ~+, DFAA, DCAA, DPA, and NO2- (Table VII), but the pro-
cess is not ubiquitous (Bertilsson et al., 1999; Koopmans and Bronk, in press).
DON and isolated humic substances can be a source of labile N when irra-
diated with sunlight, and wavelengths in the ultraviolet (UV) region (280-
400 nm) produce the N photoproducts most efficiently (Bushaw et al., 1996).
Humic substances are likely important substrates for photoproduction because
their aromaticity and color allow them to absorb UV light, making them more
photochemically reactive than other classes of marine DOM. Furthermore, an es-
timated 50 to 75% of the N associated with humic substances exists as DFAA,
amino sugars, and other N-rich compounds that are likely sources of the labile N
forms produced photochemically (Valiela and Teal, 1979; Rice, 1982; Thurman,

1985; Stevenson, 1994).
In a river and bayou in Louisiana, an estimated 9 to 20% of the TON in the

photic zone was converted to N~ + each day (Wang et al., 2000). Koopmans

and Bronk (in press) measured N photoproduction from DOM isolated from sur-
ficial groundwaters. Photochemical production of ~ + was observed in 4 of

5 irradiated estuarine surface water samples, but in only 2 of 13 groundwater
samples. In contrast, the photochemically mediated loss of N~ + was observed

in 7 of 13 groundwater samples, likely due to incorporation into DOM. These
data suggest that photochemical reactions may be a sink as well as a source of
available N.

In a cross-system comparison, photoproduction experiments were performed
in parallel with 15N uptake experiments (Bronk et al., unpublished data). Photo-
chemical ammonification supplied an average of 13, 13, and 7% of the NHt taken
up in the Eastern Tropical North Pacific, South Atlantic Bight, and two rivers in
Georgia, respectively. When photoproduction is detected, it supplies up to 38%
of the DPA utilized and up to 33% of the NO2- taken up. Photochemical am-
monification is a relatively minor source of N~ + in all three environments with
rates being 2 to 6% of biotic ~ + regeneration rates, measured with the 15N

isotope dilution technique (Glibert et al., 1982). In a study in Lake Maracaibo,
photochemical ammonification rates are '""30% of the total near surface rates of
N~+ regeneration (Gardner et al., 1998).

E. SINKS FOR DON: RESEARCH PRIORITIES

Research on DON utilization is poised for rapid development. Some specific
areas where additional study should prove fruitful would be to address questions
of the differential flow of the C and N fractions of DOM in parallel. Combining
the new enzymatic approaches with dual labeled substrates r3c, 15N, 180, etc.)
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Table VII

Rates of Photochemical Release from Dissolved Organic Nitrogen (DON) in Whole
Water or Various DON Fractions

Photoproduction

rate

(ng-atNLl h-l)Location Date Substrate Reference
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Table vn (Continued)

Photoproduction
rate

(ng-atNL -1 h-1)Location Date Substrate Reference

Eastern July 1995

Tropical
North Pacific

South Atlantic March

Bight 1999
Altarnah and Mar, July,

Savannah Oct1998
rivers

Whole water 5.4 :J::4.4 Brook et al.,
unpublished data

Whole water 35.3 :I: 39.3 Brook et al.,
unpublished data

Brook et al.,
unpublished data

Whole water 10.8:i: 15.1

Mean :!: std 350.0 :!: 559.Sb
Mean :!: std 136.5 :!: 139.4c

Production of dissolved free and combined amino acids
Lake Skarshult, July 1994 Whole water 63

Sweden

Production of
DPA

Skidaway August 2.8 x Con- ND
River, GA 1995 centrated humics

Skidaway February 2.8 x Con- ND
River, GA 1996 centrated humics

Skidaway February 28x Con- 41:!: 7.1"
River, GA 1996 centrated humics

Satilla River, October 2.28 x Con- 9 :!: 8.5"
GA 1996 centrated humics

Eastern July 1995 Whole water 6.1:!: 9.4

Tropical
North Pacific

Altarnah and Mar, July, Whole water 8.7 :!: 12
Savannah Oct 1998
rivers

J~rgensen et al.,

1998

Bushaw-Newton
and Moran, 1999

Bushaw-Newton
and Moran, 1999

Bushaw-Newton
and Moran, 1999

Bushaw-Newton
and Moran, 1999

Bronk et at.,
unpublished data

Brook et al.,
unpublished data

Mean :i: std 16.2 :i: 16.6

May Isolated humics 1.4 Kieber et al., 1999

Production of

NO2-

Coastal

seawater, NC

Albernlarle

sound, NC

Marsh, NC

Cape Fear

Estuary, NC

Isolated humics Kieber et al., 1999May 6.7

May
May

Isolated humics
Isolated humics

1.9
4.9

Kieber et al., 1999

Kieber et al., 1999

(Continues)
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Table VII (Continued)

Photoproduction
rate

(ng-atNL -1 h-1)Date Substrate ReferenceLocation

Eastern

Tropical
North Pacific

Altarnah and
Savannah
rivers

July 1995 4.8 :!:4.4 Brook et at.,

unpublished data

Whole water

Mar, July,
Oct 1998

0.3 :!:0.9 Brook et at.,
unpublished data

Whole water

Mean :i: std 3.3 :i: 2.5

Note. Data are presented as mean :i: standard deviation unless otherwise noted. ND: not
detected.
a Standard errors.

bIncluding all data.
cExcluding the Bayour Trepagnier data.

will likely show that the fate of the separate elements in DOM are different
trophic levels (for example, see Fig. 6). It may also show that mixotrophy is more
widespread than presently recognized. Along these same lines, quantifying where
the DON is going, into autotrophic versus heterotrophic biomass, is extremely im-
portant to determining how these flows are modeled. Combining tracer techniques
with flow cytometric sorting is one very promising way to discriminate between au-
totrophic and heterotrophic uptake (Lipschultz, 1995). The increasing availability
of flow cytometers and the higher sorting speeds they can reach should make this
approach much more widespread in the future. Finally, the long-term goal ofbring-
ing molecular techniques to bear on issues of elemental cycling is beginning to pay
off. Quantitative PCR-type approaches will continue to be refined, holding out the
tantalizing possibility of estimating flux rates without the perturbations inherent
in traditional incubation techniques.

V. DON TURNOVER TIMES

Considering the heterogeneous nature of the DON pool, interpreting DON
turnover times can be difficult. Turnover times for organic N cover a broad
range from minutes for DFAA (Fuhrman, 1990) to hundreds of years for the
bulk DON pool (Vidal et al., 1999; Table vm). In the Chesapeake Bay plume,
DFAAs cycle rapidly with turnover times of 0.5 to 1.0 h in spring and summer
and '"'-'3 h in winter (Fuhrman, 1990). When considering the bulk DON pool,
Abell et al. (2000) estimated turnover times, based on the surface concentrations
of bioavailable TON in the mixed layer, to be 18 years when both shallow or
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deep isopycnal degradation estimates are used. The residence time of DON in the
surface waters of the equatorial Atlantic is estimated at 2.5 years (Vidal et al.,
1999). Harrison et al. (1992) estimated a maximum DON turnover time of 333
days (0.003 day-l) in the northeastern Pacific by measuring changes in DON con-
centrations between cruises. Considering the enormous range of turnover times,
one tends to wonder whether turnover times for the bulk DON pool really tell us
much.

One danger in interpreting DON turnover times estimated with 15N tracers is the
convention that the shorter the turnover time, the more labile the compound. For
example, Bronk and Ward (1999) found that DON turnover times, estimated with
release rates measured in 15N~ + incubations, are shorter than those measured in
incubations with 15NO3 -.These data imply that DON resulting from N~ + uptake

is more labile than that resulting from NO3- uptake. In reality the compounds
produced and released are likely the same in both cases because the first step after
NO3- is taken up by phytoplankton is the reduction to N~ + .The lability should

be the same, regardless of the substrate, because the compounds released should
be the same.

VI. SUMMARY

Traditionally, DON has been viewed as a large refractory pool that is unim-
portant to microbial nutrition. Research over the past decade has transformed this
view, however, and the DON pool is emerging as a dynamic component of the
DOM and N cycles. It is increasingly included as a core measurement in field
programs and sophisticated chemical analyses are beginning to define its struc-
ture, chemical properties, sources, and sinks. I have attempted to describe recent
findings in each of these areas, which I summarize below.

1. Concentration and Composition of the DON Pool
The lowest DON concentrations are generally found in the deep ocean with the

highest observed in rivers (Fig. 1). DON generally accounts for the largest percent-
age of the TDN pool ( '""60% ) in most systems. Though much work still needs to be
done to define the global distributions of DON, the general trends emerging are that
upwelling at the equator, in both the Atlantic and Pacific, fuels DON production.
The DON produced is then exported to the north and south into the oligotrophic
gyres. Concentrations tend to decrease near the poles, though seasonal accumula-
tions in spring are likely, and increase near the continental margins. Vertical profiles
of DON generally show a surface enrichment, and DON concentrations tend to be
inversely correlated with NO3- concentrations as depth increases. Concentrations
of DON and NO3- are also often inversely correlated over time in surface waters.
Recent studies estimate that up to 80% of the net NO3- drawdown in a number of
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Table VIII

Thrnover Time Estimates of Dissolved Organic Nitrogen (DON)
and Organic N Compounds

Compound
considered

Turnover
timeLocation Date Units Method Reference

Oceanic

Northeastern

Pacific

Equatorial
Atlantic

(15S-25N)

Equatorial
Atlantic

(15S-15N)

Equatorial
Atlantic

(35-15S)
Caribbean Sea

NP DON 0.91 Years cc Harrison et at.,

1992

Vidal et at.,

1999

Oct-Nov
1995

DON 0.4 to 13.2a Years cc

Oct-Nov
1995

DON 12.7:!:26.1a Years cc Vidal et al.

1999

Oct-Nov
1995

DON 2.1 to 300" Years cc Vida! et at.

!999

15NNovember
1988

October
1992

DON 40.7:f: 10.4 Days Bronk et al.,

1994

Bronk et al.,

1994

15NSouthern

California

Bight

Northern

Sargasso Sea

DON 11 to 62 Days

14CJuly 1990,

Feb 1991

Protein 0.38 to 3.42 Days

14CJuly 1990 Modified 9.04 to 32.71

proteinb
DaysNorthern

Sargasso Sea

14CNorthern

Sargasso Sea

February
1991

Modified 9.04 to 32.71

proteinb
Days

3HNorthern

Sargasso Sea

July 1990,
Feb 1991

DFAA 0.03 to 0.29 Days

3HCentral Arctic July-Aug
1994

DFAA ~2.72 Days

Kei! and

Kirchman,
!999

Kei! and

Kirchman,
1999

Kei! and

Kirchman,
1999

Kei! and

Kirchman,
1999

Rich et al., 1997

lSN

Coastal

Monterey Bay March 1993 DON 5.0:J:: 2.4 Days Bronk and
Ward, 1999

Bronk and
Ward, 1999

Bronk et al.,
1994

15NMonterey Bay September
1993

DON 8.2 :!: 2.4 Days

15N
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Table vm (Continued)

Compound
considered

Turnover
timeDateLocation Units Method Reference

3HMississippi
River plume

Santa Rosa
Sound, FL

Flax Pond, NY

September DFAA
1991

0.02 to 0.14" Days

3HD-DNA 0.2 to 0.43 Days

3HD-DNA 0.64 to 9.7 Days

Cotner and

Gardner,1993

J~rgensen et al.,

1993

J~rgensen et al.,

1993
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Tharnes Estuary February

1999
Algal amino acid mix 0.2 to 1.9 Days Middelburg and

Nieuwenhuize,
2000

Furhrnan, 1990Hudson River

plume
Chesapeake

Bay plume
Chesapeake

Bay plume
Chesapeake

Bay plume
Chesapeake

Bay plume

September

1985

February

1985

June 1985

3H

3Hglu, gly, ala 0.060 to
0.210
0.009 to
0.090
0.017 to
0.170
0.016 to
0.240

Days Furhrnan, 1990

3Hglu, gly, ser, ala Days Furhman, 1990

3HAugust
1985

April 1986

glu, gly, ser, ala Days Furhrnan,1990

3Hglu, gly, ser, ala Days Furhrnan, 1990

Note. Data are presented as mean :i: standard deviation. NP: not presented.
a Estimated with DON concentrations and vertical flux estimates.

bGlucosylated (i.e., aged) protein as in Keil and Kirchman (1993).
cIngeneral, turnover times increased with salinity.
d Subestuary of Chesapeake Bay.

systems accumulates as DON. In the most general sense, a generic DON pool is
shaping up to look like this: Identifiable LMW compounds such as urea, DCAA,
and DFAA make up "-'5 to 10% of the total DON pool each. Roughly 30% of the
pool is HMW (> I kDa). Of that HMW fraction, "-'20-30% is hydrolyzable amino
acids with the remainder being amide in form. This leaves a substantial fraction
of the pool yet to be identified

2. Sources of DON
With respect to sources of DON, this review focuses on biotic water

column processes that result in DON production from phytoplankton and N2 fixers
(passive diffusion, active release, sloppy feeding, and viral lysis), bacteria (pas-
sive diffusion, release of exoenzymes, bactivory, and viral lysis), and micro- and
macrozooplankton (fecal pellet dissolution and excretion; Fig. 3). Rates of DON
release summarized here suggest that the magnitude of release is similar in oceanic
and coastal environments but slightly higher in estuarine systems. The percentage
of the rate of gross N uptake released as DON was highest in oceanic systems
("-'40%) and lowest in estuaries ("-'23%), though clearly more data are needed
before these generalizations can be considered robust.

3. Sinks for DON
With respect to DON sinks, this review focuses on heterotrophic uptake,

autotrophic uptake, and photochemical N decomposition. Though heterotrophs
have been traditionally considered the primary users of DON, there is increasing
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recognition that DON can be an important source of N for phytoplankton. The
recent work on phytoplankton cell surface enzymes has provided a mechanism by
which autotrophs can utilize the N associated with DON without developing trans-
port mechanisms for a wide range of compounds. Much of the interest in DON
uptake of late has been encouraged by a number of studies that have documented
a link between increases in DON concentrations and blooms of harmful algae.

Rates of DON utilization vary widely across systems and even within systems.
The work summarized here suggests that the large DON pool is more bioavailable
than previously thought. Work to date (much of which was done in freshwater sys-
tems with dark bioassays) suggests that 12 to 72% of the DON pool is bioavailable
on the time scale of days to weeks. Three key substrates within the DON pool
are urea, DCAA, and DFAA. In studies where the uptake of these substrates are
compared to other N compounds, urea averages 19% of total measured N uptake
with 38 and 23% contributed by DCAA and DFAA, respectively.

Nitrogen photoproduction has been demonstrated in a number of environments,
and it can be an important mechanism for converting DON into labile compounds
available for uptake by either phytoplankton or bacteria. Photochemical arnmoni-
ficationhas been the most studied with an average rate of 136 ng-atNL -lh-1 with
some extremely high rates documented. Rates of DPA and NO2 -photoproduction
have tended to be lower, though only a small number of studies have been
done.
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