DON bioavailability & approaches to study N uptake

Deborah A. Bronk
Department of Physical Sciences

Outline:

• DON utilization
 Allochthonous vs autochthonous

• Who is using what?

• Mechanisms of use
TDN - DIN = DON

TDN - (NO$_3^-$ + NO$_2^-$ + NH$_4^+$)
Based on Cresser 1977 Analyst
Allochthonous sources:

- Atmospheric deposition
- Rivers
- Terrestrial runoff
- Sewage effluent

REFRACTORY??

2 - 84% of N in atmospheric deposition is DON

Seitzinger and Sanders 1999 L&O

14 - 90% of N in rivers is DON

Seitzinger and Sanders 1997 MEPS
45 to 75% of the DON in rainwater was consumed

Atmospheric DON

Add DON

Riverine DON

Add DON

Incubate for 6 days

Seitzinger and Sanders 1999 L&O

Wiegner et al. 2006 AME
Transform Ion Cyclotron Resonance Mass Spectrometry

<table>
<thead>
<tr>
<th>Salinity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nd</td>
<td>nd</td>
<td>92</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>99</td>
<td>100</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>76</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>79</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

% EON that is labile

$N = 14.00674$

$C = 12.0107$
Making 15N-labeled humics

15NH$_4^+$ → XAD resin → cut → 15N-labeled humics

3 months

spun in coastal seawater for 3 months in the dark

Use Killed Controls!

Humic uptake in culture

See et al. 2006 L&O
Autochthonous sources of DON

1 - Dust arrive Florida July 1, 1999

2 - Fe concentration increased in surface waters by 300%

3 - Trichodesmium counts increase 10x

4 - DON and NH$_4^+$ 300% increase in DON

5 - Karenia brevis blooms form in October

Bronk 2002 DOM book
Sipler et al. Submitted

Growth rate (μ) = cellular division day
<table>
<thead>
<tr>
<th></th>
<th>Growth rate range (μ) divisions d⁻¹</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. brevis in culture</td>
<td>0.2-1.0 (μmax)</td>
<td>Loret et al., 2002</td>
</tr>
<tr>
<td>K. brevis field population</td>
<td>0.11-0.58</td>
<td>VanDolah et al., 2008</td>
</tr>
<tr>
<td>K. brevis field population + Trichodesmium DON</td>
<td>0.95-1.16</td>
<td>This Study</td>
</tr>
</tbody>
</table>

- masses detected in the K. brevis bloom water were bioavailable
- some bioavailable masses detected in the K. brevis bloom water were shared with the TCE concentrate
- 56% (94) of masses unique to the TCE treatment were bioavailable to the K. brevis community

Those masses >m/z 500 were more bioavailable than those <m/z 500
15N-urea

Drawbacks:
- DON pool of unknown composition
- Few commercially available tracers
- $$$$$
Coastal

<table>
<thead>
<tr>
<th>Location</th>
<th>NH$_4^+$</th>
<th>NO$_x$</th>
<th>Urea</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altamaha River, GA</td>
<td>56</td>
<td>27</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Savannah River, GA</td>
<td>65</td>
<td>17</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Chesapeake Bay (Aug)</td>
<td>75</td>
<td>1</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Orinoco River Plume</td>
<td>81</td>
<td>7</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Mississippi River plume</td>
<td>14</td>
<td>22</td>
<td>48</td>
<td>15</td>
</tr>
</tbody>
</table>

Bronk et al. In prep.

Oceanic

<table>
<thead>
<tr>
<th>Location</th>
<th>NH$_4^+$</th>
<th>NO$_x$</th>
<th>Urea</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Atlantic Bight</td>
<td>53</td>
<td>15</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>66</td>
<td>6</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Norway fjord</td>
<td>31</td>
<td>7</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>South Pacific</td>
<td>49</td>
<td>5</td>
<td>39</td>
<td>7</td>
</tr>
<tr>
<td>ETN Pacific</td>
<td>50</td>
<td>9</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>
DON Mean = 34 ± 18 %

Underestimate?
Chesapeake Bay - August

![Graph showing uptake rates in Chesapeake Bay - August](image)

South Pacific

![Graph showing DIN and DON uptake in South Pacific](image)

Bronk and Gilbert 1993 Mar Biol

Bronk & Campbell In prep.
Who is using the DON?

Bacteria → DON → Phytoplankton

$^{15}\text{NH}_4^+$

29-93% of bacteria retained on GF/F filters
Historical view.....

Current view.....
Flow Cytometric Sorting

Flow Cytometric Sorting

Phyto (+ chl)

Bact (- chl)

Traditional

GF/F
Phyto + some Bact

Stable Isotope probing

Individual Phyto groups

Individual Bact groups

\({}^{15} \text{NH}_4 \)
Cross-System Comparison: Dissolved N

Bradley & Bronk Submitted

Overestimation of phyto uptake
Flow Cytometric Sorting

Phyto (+ chl) Bact (- chl)

Phyto groups Bact groups

Traditional

GF/F
Phyto + some Bact

Stable Isotope probing

Stable – Isotope Probing

Starting Population

Labeled Population

Extract DNA

PCR and Sequencing

Identity of the active members of the population

Modified from figure by Craig Phelps - Lee Kerkoff
Cesium Chloride (CsCl) Gradient

Modified from figure by Lee Kerkhoff

16S rRNA gene profiles of bacterial 15NO$_3^-$ uptake

<table>
<thead>
<tr>
<th></th>
<th>3m plume</th>
<th>Station 6-mid ORP site</th>
<th>14N-total community</th>
</tr>
</thead>
<tbody>
<tr>
<td>15N-active community</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>halocline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCMAX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Below euphotic

No amplification

Lee Kerkhoff et al. In prep.
Kerkhof et al. in prep.

Orinoco River Plume site

Synechococcus WH7803 14N vs. 15N rbcL gene DNA as observed by qPCR

Wawrik and Bronk submitted
Synechococcus → \(\text{NH}_4^+ \) \(\text{DON} \) → **Diatoms** → \(\text{NO}_3^- \)
Diatom field control

West Florida Shelf 2008

Diatoms

Wawrik et al. submitted
<table>
<thead>
<tr>
<th>Substrate</th>
<th>% Syn</th>
<th>% Diatom</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_4^+)</td>
<td>78</td>
<td>35</td>
</tr>
<tr>
<td>(\text{NO}_3^-)</td>
<td>71</td>
<td>0-37</td>
</tr>
<tr>
<td>urea</td>
<td>53</td>
<td>0-43</td>
</tr>
<tr>
<td>AA</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>glut acid</td>
<td>46</td>
<td>15</td>
</tr>
</tbody>
</table>

Wawrik & Bronk Submitted

Phytoplankton mechanisms to access organic N:

- Organic oxidases
- Peptide hydrolysis
- Pinocytosis
- Phagocytosis
- Photochemical processes
- Salinity release
N
N
N
Farming nitrogen from “refractory” compounds!
Humic Uptake Mechanisms?

- = ^{13}C
- = ^{15}N

Direct Uptake (Pinocytosis)

Enzymatic Cleavage (Amino Acid Oxidation)

Photoproduction of labile N

- UV radiation
- Humic or fulvic acids
- Proteins
- Large organic moieties

NH_4^+
DPA
NO_2^-

Based on Bushaw et al. 1996 Nature
Eastern Tropical North Pacific

<table>
<thead>
<tr>
<th>Date (m)</th>
<th>Depth (m)</th>
<th>% NH$_4^+$ Uptake</th>
<th>DPA</th>
<th>NO$_2^-$</th>
<th>% NH$_4^+$ Regen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NH$_4^+$</td>
<td>DPA</td>
<td>NO$_2^-$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
<td>70.5</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>17.0</td>
<td>29.6</td>
<td>4.1</td>
<td>5.7</td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>12.2</td>
<td>0.0</td>
<td>17.0</td>
<td>4.1</td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>25.6</td>
<td>12.2</td>
<td>0.0</td>
<td>8.6</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>4.2</td>
<td>0.0</td>
<td>65.3</td>
<td>3.0</td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>5.6</td>
<td>0.0</td>
<td>92.7</td>
<td>4.1</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>0.0</td>
<td>43.4</td>
<td>14.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
<td>64.6</td>
<td>70.3</td>
<td>99.9</td>
<td>8.1</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>17.3</td>
<td>117.2</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>86.0</td>
<td>168.8</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>50.7</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>19.9</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Mean production:

- NH$_4^+$: 23.3
- DPA: 28.3
- NO$_2^-$: 62.1
- NH$_4^+$ Regen.: 4.4

Standard deviation:

- NH$_4^+$: 27.2
- DPA: 30.3
- NO$_2^-$: 61.8
- NH$_4^+$ Regen.: 3.6
NH₄⁺ photoproduction from *Tricho DON*

![NH₄⁺ Concentrations](image)

PO₄⁻ photoproduction from *Tricho DON*

![PO₄⁻ Concentrations](image)
NH_4^+ Conc (µmol L$^{-1}$) vs. Salinity (ppt)

KW

TM

Bronk et al. Submitted
• A significant fraction of both autothonomous and allochthonous DON is labile on time scales of days.
• Both bacteria AND phytoplankton use DON.

Big Questions:
Who is using what and how do they do it?
Acknowledgments:
Marta Sanderson and Quinn Roberts
Paul Bradley, Lynn Killberg, and Jason See

EON work: Margie Mulholland, Nancy Love, Liz Canuel

SIP work: Lee Kerkhof and Boris Wawrik