Cross-amplification of microsatellite loci in *Diploria* reef corals

Kristin Halbert

Joanna Bince and Dave Carlon
Department of Zoology
Khalbert@hawaii.edu
Funded by C-MORE, and NSF

Corals

- Base of reef ecosystem
- Provide food and shelter
- On the decline
- Erosion, incr. water temp, sea level rise
- Management and conservation
- Population structure unknown

Acropora palmata Study*

- Elkhorn coral
- Caribbean Sea
- Two genetically different populations

*Baumns IB, Miller MW, Hellberg ME (2005). Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. *Molecular Ecology* **14**, 1377-1390.

Diploria

- D. strigosa or Brain Coral
- D. labyrinthiformis or Grooved brain coral
- D. clivosa or Knobby brain coral
- •Live in clear, low nutrient waters between 1 and 30 m depth
- Sampled from Florida Keys,
 Panama, and the Flower Garden
 Banks in the Gulf of Mexico

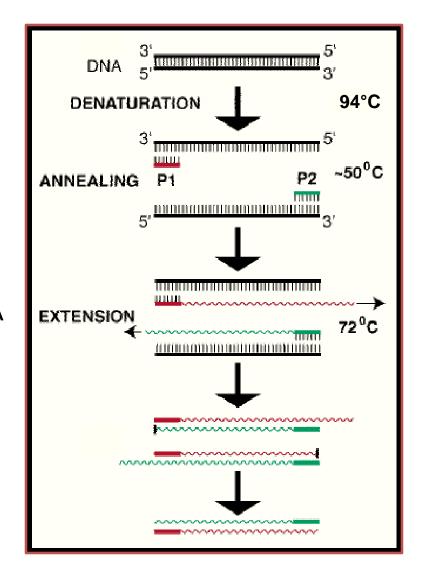
D. Labrynthiformas

Microsatellites

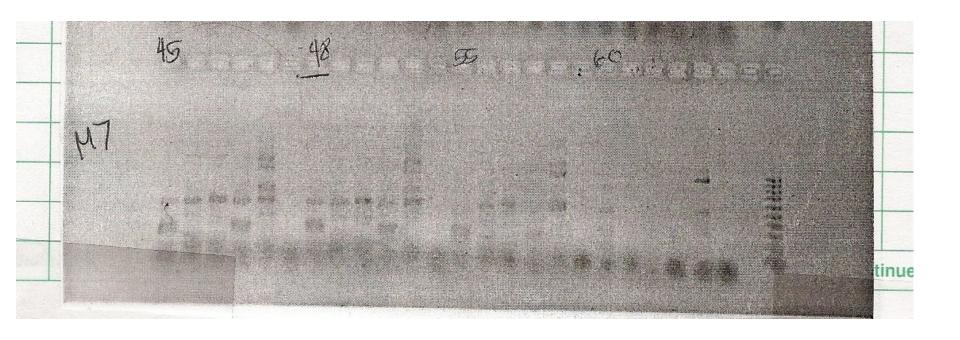
- Tandem repeats of 1-6 nucleotides
- Found at high frequency
- Mutate frequently-
 - 10⁻² 10⁻⁶ /locus/generation
- Answer fine-scale ecological questions

Microsatellite isolation

- Genomics- \$200,000
- Build Species specific microsatellite library- \$10,000
- Cross-species amplification
 - Cost efficient
 - Favia and Diploria belong to same clad
 - Using m-sat library developed for F. fragum*


*Carlon, D. B. & Lippè, C. (2008). Fifteen new microsatellite markers for the reef coral *Favia fragum* and a new *Symbiodinium* microsatellite. *Molecular Ecology Resources*, **8**, 870-873.

METHODS overview

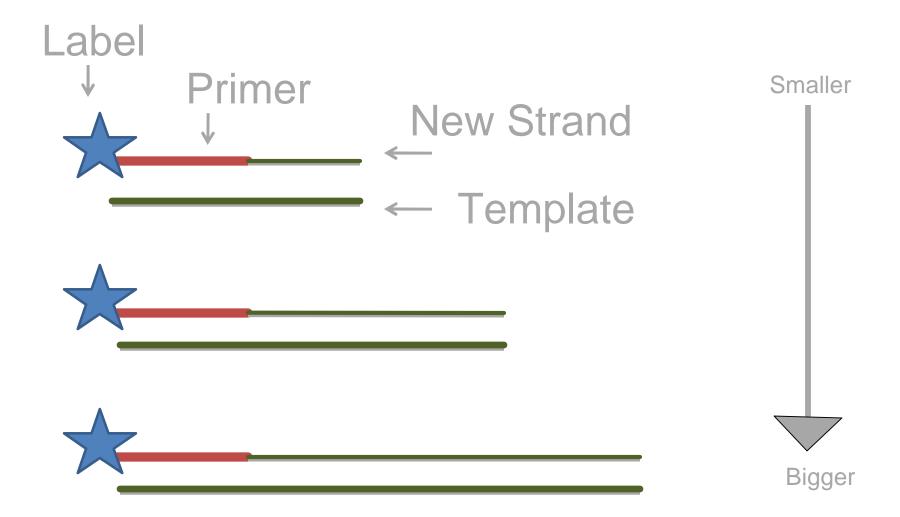

- DNA Isolation: Qiagen isolation kit
- Polymerase Chain Reaction (PCR)
- Gel Electrophoresis
- Automated Genotyping

Gradient PCR

- Cycling Parameters
 - Initial Denature at 94°C for 10min
 - Denature at 94°C for 30sec
 - Anneal at 45-57°C for 40sec
 - Extend at 72°C for 60sec
 - Final Extension at 72°C for 10min
 - Cycled 30-32 times
- 11µl reactions
 - 1µI (25-50ng) of total genomic DNA
 - 10X NH₄ reaction buffer
 - 50mM MgCl₂
 - BSA
 - dNTPs
 - BIOLASE DNA polymerase
 - Forward and reverse primers
 - Water

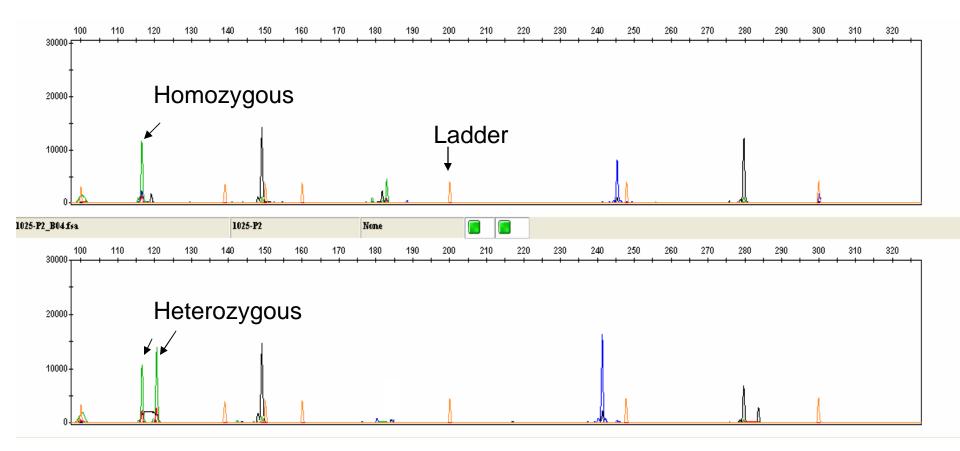
Results of gradient PCR

Increase in Temperature? ? ?


1.5% Agarose Gel

Automated genotyping

- Sent PCR products for automated genotyping
 - ABI 3770 capillary sequencer
 - Snyder hall sequencing facility



Labeled Primers

Chromatogram

- Scoring chromatogram
 - Ladder
 - Size and intensity

Results for 6 of 15 loci

	Diploria clivosa			Diploria labyrinthiformis			Diploria strigosa		
Locus	n ₁₀	Α	Range	n ₁₀	Α	Range	n ₁₀	Α	Range
D7				7	6	117-179			
D10	4	3	143-156	6	3	143-184	3	1	143
B12	4	5	214-321	5	5	252-280	2	3	294-303
Ffr12									
Ffr127									
Ffr31									

Monomorphic

Optimize

A = number of alleles

 n_{10} = number of samples successfully genotyped

Range = size range of alleles

FUTURE RESEARCH

- Sample size
- Genotyped 30/100 Diploria samples
- Cross-amplification of 6/15 microsatellite loci

APPLICATIONS

- Learn more about population structure including size of population, migration rates and gene flow.
 - May asses future survival rates and historical population sizes
- Management

Acknowledgements

- Supported by Center for Microbial Oceanography: Research and Education (C-MORE) and National Science Foundation (NSF).
- Dave Carlon
- Joanna Bince
- John Fitzpatrick

Thank You

Questions?

Khalbert@hawaii.edu